
Solutions to Exercises

For many of the exercises, drawing a diagram will be found extremely helpful.

Chapter 1

1.1 (i) The triangle inequality.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Then

|x + y|2 =
n∑

i=1

(xi + yi)
2 =

n∑
i=1

x2
i + 2

n∑
i=1

xiyi +
n∑

i=1

y2
i

≤
n∑

i=1

x2
i + 2

(
n∑

i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

+
n∑

i=1

y2
i

=

( n∑

i=1

x2
i

)1/2

+
(

n∑
i=1

y2
i

)1/2



2

= (|x| + |y|)2

where we have used Cauchy’s inequality.

(ii) The reverse triangle inequality.

Write y = z − x so x = z − y. Then (i) becomes |z| ≤ |z − y| + |y| or
|z| − |y| ≤ |z − y|. Interchanging the roles of y and z we also have |y| −
|z| ≤ |y − z| = |z − y|. Thus ||z| − |y|| = max{|z| − |y|, |y| − |z|} ≤ |z −
y|, which is the desired inequality.

(iii) Triangle inequality - metric form.

We have

|x − y| = |(x − z) + (z − y)| ≤ |x − z| + |z − y|

using triangle inequality (i).
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1.2 Let x ∈ Aδ+δ′ . Then there exists a ∈ A such that |x − a| ≤ δ + δ′. If x = a,

then clearly x ∈ (Aδ)δ′ . Otherwise let y be the point on the line segment
[a, x] distance δ from a. Thus y = a + δ(x − a)/|x − a|, so |y − a| =
δ|x − a|/|x − a| = δ, so y ∈ Aδ. Moreover, x − y = x − a − δ(x − a)/

|x − a| = (x − a)[1 − δ/|x − a|], so |x − y| = |x − a| − δ ≤ δ + δ′ − δ =
δ′. As y ∈ Aδ, x ∈ (Aδ)δ′, so Aδ+δ′ ⊆ (Aδ)δ′ .

Now let x ∈ (Aδ)δ′ . We may find y ∈ Aδ such that |x − y| ≤ δ′, and then
we may find a ∈ A such that |y − a| ≤ δ. By the triangle inequality, Exercise
1.1(iii), |x − a| ≤ |x − y| + |y − a| ≤ δ′ + δ, so x ∈ Aδ+δ′ . Thus (Aδ)δ′ ⊆
Aδ+δ′ . We conclude (Aδ)δ′ = Aδ+δ′ .

1.3 Let A be bounded, that is A has finite diameter, so supx,y∈A |x − y| = d <

∞, where d is the diameter of A. Let a be any point of A. Then for all
x ∈ A, |x − a| ≤ d, so that |x| = |a + (x − a)| ≤ |a| + |x − a| ≤ |a| + d,

using the triangle inequality, Exercise 1.1(i). Thus, setting r = |a| + d , we
have x ∈ B(0, r). We conclude A ⊆ B(0, r).

If A ⊆ B(0, r) and x, y ∈ A, then |x − y| ≤ |x| + |y| ≤ r + r = 2r, so
diam A ≤ 2r, and in particular A is of finite diameter.

1.4 (i) A non-empty finite set is closed but not open, with A = A, and intA = Ø.

(ii) The interval (0, 1) is open but not closed, with (0, 1) = [0, 1] and
int(0, 1) = (0, 1).

(iii) The interval [0, 1] is closed but not open, with [0, 1] = [0, 1] and
int[0, 1] = (0, 1).

(iv) The half-open interval [0, 1) is neither open or closed, with [0, 1) =
[0, 1] and int[0, 1) = (0, 1).

(v) The set A = {0, 1, 1
2 , 1

3 , 1
4 , . . . } is closed but not open, with A = A and

intA = Ø.

1.5 Following the usual construction, the middle third Cantor set may be written
F =⋂∞

k=0 Ek , where Ek consists of the union of 2k disjoint closed intervals
in [0, 1], each of length 3−k . For each k, Ek is closed since it is the union of
finitely many closed sets. Since the intersection of any collection of closed
sets is closed (see Exercise 1.6), we conclude that F is closed. F is a subset
of [0, 1] so it is bounded, and hence F is compact.

To show that F is totally disconnected, suppose x, y ∈ F with x < y. Then
we can find an Ek such that x and y belong to different intervals [a, b]
and [c, d] of Ek with b < c. Let b < p < c. Then F is contained in the
union of the disjoint open intervals (−1, p) and (p, 2), with x ∈ (−1, p)

and y ∈ (p, 2). Thus F is totally disconnected.
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Since F is closed, F = F . Since F contains no open interval, intF = Ø,
and thus ∂F = F\intF = F .

1.6 Let {Ai : i ∈ I } be a collection of open subsets of Rn and let A =⋃i∈I Ai .
If x ∈ A, then x belongs to one of the sets, Aj , say. Since Aj is open, there
exists r > 0 such that B(x, r) ⊂ Aj ⊂ A, and hence A is open.

Now let {A1, A2, . . . , Ak} be a finite collection of open subsets of Rn and
let A =⋂k

i=1 Ai . If x ∈ A, then x belongs to each of the open sets Ai and
hence, for each i = 1, . . . , k, there exists ri > 0 such that B(x, ri) ⊂ Ai .
Letting r = min1≤i≤k ri > 0, then B(x, r) ⊂ B(x, ri) ⊂ Ai for all i, so that
B(x, r) ⊂ A and hence A is open.

Let A ⊂ Rn and let B = Rn\A be the complement of A. First assume that
B is not open. Then there exists x ∈ B such that, for every positive integer
k, the ball B(x, 1/k) is not contained in B and we may choose a sequence
xk ∈ B(x, 1/k) \ B, so xk ∈ A and xk → x /∈ A, so A is not closed. Thus
if A is closed then B must be open.

Now suppose that A is not closed so that there exists a sequence of points
xk ∈ A with xk → x ∈ B = Rn\A. It follows that, for every r > 0, there is
some xk ∈ B(x, r)\B so that B(x, r) �⊂ B, giving that B is not open. Thus
if B is open then A = Rn\B must be closed.

Now let {Bi : i ∈ I } be a collection of closed subsets of Rn and let B =⋂
i∈I Bi . Each of the sets Ai = Rn\Bi is open. Thus

A =
⋃
i∈I

Ai =
⋃
i∈I

(Rn\Bi) = Rn\B

is open and hence B is closed.

Similarly, if {Bi : i = 1, . . . , k} is a finite collection of closed subsets of
Rn and B =⋃k

i=1 Bi , then each of the sets Ai = Rn\Bi is open and hence

A =
k⋂

i=1

Ai =
k⋂

i=1

(Rn\Bi) = Rn\B

is open so that B is closed.

1.7 Recall that a subset of Rn is compact if and only if it is both closed and
bounded. Exercise 1.6 showed that the intersection of any collection of
closed subsets of Rn is closed. Thus, if A1 ⊃ A2 ⊃ · · · is a decreasing
sequence of non-empty compact subsets of Rn then A =⋂∞

k=1 Ak is cer-
tainly closed. It is also bounded, since it is a subset of A1 which is bounded,
so A is compact.
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To show that A is non-empty we argue by contradiction. Suppose that⋂∞
k=1 Ak = Ø so that Rn = Rn\⋂∞

k=1 Ak =⋃∞
k=1(R

n\Ak). Then A1 ⊂⋃∞
k=1(R

n\Ak). Since A1 is compact, it follows that A1 is contained in the
union of finitely many of the open sets Rn\Ak . Since Rn\A1 ⊂ Rn\A2 ⊂
· · · , it follows that A1 ⊂ (Rn\Ak) for some k. This is impossible, since
Ak ⊂ A1 and Ak �= Ø, for each k.

1.8 The half-open interval [0, 1) is a Borel subset of R since, for example,

[0, 1) = [0, 2] ∩ (−1, 1).

where [0, 2] is closed and hence a Borel set and (−1, 1) is open and hence
a Borel set.

1.9 Let Ak be the set of numbers in [0, 1] whose kth digit is 5. Then Ak is
union of 10k−1 half open intervals, so is Borel. Then

F =
∞⋂

j=1

∞⋃
k=j

Ak,

as x ∈ F if and only if x ∈ Ak for arbitrarily large k. Thus F is formed as
the countable intersection of a countable union of Borel sets, so is Borel.

1.10 Let x = (x1, x2), y = (y1, y2), a = (a1, a2). We may write the transforma-
tion S as

S(x1, x2) = (cx1 cos θ − cx2 sin θ + a1, cx1 sin θ + cx2 cos θ + a2)

so

|S(x1, x2) − S(y1, y2)|2
=c2|((x1 − y1) cos θ − (x2 − y2) sin θ, (x1 − y1) sin θ+(x2 − y2) cos θ)|2
=c2((x1 − y1)

2 cos2 θ+(x2 − y2)
2) sin2 θ−2(x1 − y1)(x2 − y2) sin θ cos θ

+c2((x1 − y1)
2 sin2 θ+(x2 − y2)

2) cos2 θ+2(x1 − y1)(x2−y2) sin θ cos θ

= c2((x1 − y1)
2+(x2 − y2)

2)=c2|(x1, x2)−(y1, y2)|2,

using that cos2 θ + sin2 θ = 1. Thus |S(x) − S(y)| = c|x − y|, so S is a
similarity of ratio c.

Note that

(
cos θ − sin θ

sin θ cos θ

)(
x1
x2

)
gives the vector

(
x1
x2

)
rotated

about the origin by an anticlockwise angle θ . Thus the geometrical effect
of the similarity S is a dilation about the origin of scale c, followed by a

rotation through angle θ, followed by a translation by the vector

(
a1
a2

)
.
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1.11 (i) Since sin x → sin 0 = 0 as x → 0, we have

limx→0 sin x = limx→0 sin x = lim
x→0

sin x = 0.

(ii) We know that

−1 ≤ sin(1/x) ≤ 1, for x > 0

so that

−1 ≤ limx→0 sin(1/x) ≤ limx→0 sin(1/x) ≤ 1.

Moreover, for each n = 1, 2, . . . ,

sin(1/xn) = −1, for xn = 1/(2n + 3/2)π → 0

and

sin(1/yn) = 1, for yn = 1/(2n + 1/2)π.

Thus
limx→0 sin(1/x) ≤ −1 and limx→0 sin(1/x) ≥ 1,

so limx→0 sin(1/x) = −1 and limx→0 sin(1/x) = 1.

(iii) We have |x2 + x sin(1/x)| ≤ |x2| + |x| → 0 as x → 0. Thus

limx→0(x
2 + (3 + x) sin(1/x)) = limx→0(x

2 + x sin(1/x))

+ limx→03 sin(1/x)

= 0 − 3 = −3

using part (ii). Similarly

limx→0(x
2 + (3 + x) sin(1/x)) = limx→0(x

2 + x sin(1/x))

+ limx→03 sin(1/x)

= 0 + 3 = 3.

1.12 If f, g : [0, 1] → R are Lipschitz functions, then there exist c1, c2 > 0 such
that

|f (x) − f (y)| ≤ c1|x − y| and |g(x) − g(y)| ≤ c2|x − y| (x, y ∈ [0, 1]).
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It follows that

|f (x) + g(x) − (f (y) + g(y))| ≤ |f (x) − f (y)| + |g(x) − g(y)|
≤ (c1 + c2)|x − y| (x, y ∈ [0, 1])

and so the function defined by f (x) + g(x) is also Lipschitz.

For x, y ∈ [0, 1],

|f (x)g(x)−f (y)g(y)| = |f (x)g(x)−f (y)g(x)+f (y)g(x)−f (y)g(y)|
≤ |f (x)g(x)−f (y)g(x)|+|f (y)g(x)−f (y)g(y)|
= |g(x)||f (x)−f (y)|+|f (y)||g(x)−g(y)|.

Moreover, for x ∈ [0, 1], we have |f (x)−f (0)|≤c1|x|≤c1, so that |f (x)|
≤ |f (0)| + c1 = c′

1, say. Similarly |g(x)| ≤ c′
2. Thus

|f (x)g(x) − f (y)g(y)| ≤ |c′
1||f (x) − f (y)| + |c′

2||g(x) − g(y)|
≤ (c1c

′
1 + c2c

′
2)|x − y|

so f (x)g(x) is Lipschitz.

1.13 Given x, y ∈ R with y �= x, it follows from the mean-value theorem that
there exists a ∈ (y, x) or a ∈ (x, y) with

f (x) − f (y)

x − y
= f ′(a).

Thus ∣∣∣∣f (x) − f (y)

x − y

∣∣∣∣ = |f ′(a)| ≤ c

and hence

|f (x) − f (y)| ≤ c|x − y| (x, y ∈ R)

so that f is a Lipschitz function.

1.14 If f : X → Y is a Lipschitz function, then

|f (x) − f (y)| ≤ c|x − y| (x, y ∈ R),

for some c > 0. Thus, given ε > 0 and y ∈ R, it follows that |f (x) −
f (y)| < ε, whenever

c|x − y| < ε,
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that is, whenever

|x − y| < ε/c.

So, on taking δ = ε/c > 0, it follows that f is continuous at y, using the
‘epsilon-delta’ definition of continuity.

1.15 Note that if y = f (x) = x2 + x, then solving the quadratic equation for x,

we get x = 1
2 (−1±(1 + 4y)1/2), taking real values only. Thus (i) f −1(2) =

{−2, 1}. (ii) f −1(−2) = Ø. (iii) As y increases from 2 to 6, (1 + 4y)1/2

increases from 3 to 5, so x runs over two ranges [1, 2] and [−3, −2]. Hence
f −1([2, 6]) = [−3,−2] ∪ [1, 2].

1.16 For 0 ≤ x, y ≤ 2,

|f (x) − f (y)| = |x2 − y2| = |x + y||x − y| ≤ 4|x − y|
so f is also Lipschitz on [0, 2].

Thus f is also Lipschitz on [1, 2], with f ([1, 2]) = [1, 4]. For 1 ≤ x, y ≤ 4,

|f −1(x) − f −1(y)| = |√x − √
y| =
∣∣∣∣ x − y√

x + √
y

∣∣∣∣ ≤ 1

2
|x − y|

so f −1 is Lipschitz on [1, 4], so f is bi-Lipschitz on [1, 2].

For x > 0,
|f (2x) − f (x)|

|2x − x| = 4x2 − x2

x
= 3x.

Thus |f (x) − f (y)|/|x − y| is not bounded on R so f is not Lipschitz
on R.

1.17 We use the ‘open cover’ definition of compactness. Let E be compact, f

continuous, and f (E) ⊂⋃Ui , a cover of f (E) by open sets. Since f is
continuous, the sets f −1(Ui) are open, so E ⊂⋃ f −1(Ui) is a cover of
E by open sets. By compactness of E this has a finite subcover, say E ⊂⋃m

r=1 f −1(Ui(r)), so f (E) ⊂⋃m
r=1 Ui(r), which gives a cover of f (E) by

a finite subset of the Ui. Thus f (E) is compact.

1.18 We take complements in A1. Thus A1 \ A2, A1 \ A3, . . . is an increasing
sequence of sets, so by (1.6)

µ

(
A1 \

∞⋂
i=1

Ai

)
= µ

( ∞⋃
i=1

(A1 \ Ai)

)
= lim

i→∞
µ(A1 \ Ai).

Since µ(A1) < ∞, this gives µ(A1) − µ
(⋂∞

i=1 A1
) = limi→∞(µ(A1) −

µ(Ai)) = µ(A1) − limi→∞ µ(Ai), so µ
(⋂∞

i=1 Ai

) = limi→∞ µ(Ai).
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1.19 We show that µ satisfies conditions (1.1)–(1.4) and is hence a measure.

First, since a /∈ Ø, µ(Ø) = 0 and thus (1.1) is satisfied.

Secondly, suppose that A ⊂ B. If a ∈ A, then a also belongs to B and
hence µ(A) = µ(B) = 1. If a /∈ A, then µ(A) = 0 ≤ µ(B). Thus, in both
of the two possible cases, (1.2) is satisfied.

Finally, suppose that A1, A2, . . . is a sequence of sets. If a /∈ Ai , for each
positive integer, then a /∈⋃∞

i=1 Ai so that

µ

( ∞⋃
i=1

Ai

)
= 0 =

∞∑
i=1

µ(Ai).

On the other hand, if a ∈ Aj , for some integer j , then a ∈⋃∞
i=1 Ai so that

µ

( ∞⋃
i=1

Ai

)
= 1 = µ(Aj ) ≤

∞∑
i=1

µ(Ai).

If the sets Ai are disjoint, then a /∈ Ai for i �= j so that µ(Ai) = 0 for
i �= j and hence

µ

( ∞⋃
i=1

Ai

)
= 1 =

∞∑
i=1

µ(Ai).

Thus, in both of the two possible cases, (1.3) and (1.4) are satisfied.

1.20 With the construction of the middle third Cantor set F as indicated in figure
0.1, the kth stage of the construction Ek is the union of 2k intervals each
of length 3−k , with E0 ⊃ E1 ⊃ E2 ⊃ . . . and F =⋂∞

k=1 Ek .

Define a mass distribution µ by starting with unit mass on E0 = [0, 1],
splitting this equally between the two intervals of E1, splitting the mass on
each of these intervals equally between the two sub-intervals in E2, etc.
Thus we construct a mass distribution µ on F by repeated subdivision,
splitting the mass in as uniform a way as possible at each stage. For each
interval I in Ek we have µ(I) = 2−k , and this allows us to calculate the
mass of any combination of intervals from the Ek and defines µ on every
subset of R.

1.21 For all ε > 0, Ø ⊂ [0, ε] so L1(Ø) ≤ L1([0, ε]) = ε. This is true for arbi-
trarily small ε > 0, so L(Ø) = 0, as required for (1.1).

Let A ⊂ B. Given ε > 0 we may find a countable collection of intervals
[ai, bi] such that A ⊂ B ⊂⋃∞

i=1[ai, bi] with
∑∞

i=1(bi − ai) < L1(B) + ε.
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It follows that L1(A) ≤ L1(B) + ε for all ε > 0, so that L1(A) ≤ L1(B)

for (1.2).

For (1.3), assume that L1(Ai) < ∞ for each i, since the result is clearly true
otherwise. For each ε > 0 and i = 1, 2, . . . , there exist intervals [ai,j , bi,j ]
such that

Ai ⊂
∞⋃

j=1

[ai,j , bi,j ] and
∞∑

j=1

(bi,j − ai,j ) < L1(Ai) + ε

2i
.

Clearly
⋃∞

i=1 Ai ⊂⋃∞
i=1
⋃∞

j=1[ai,j , bi,j ] and so

L1

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

∞∑
j=1

(bi,j − ai,j )≤
∞∑
i=1

(
L1(Ai) + ε

2i

)
=

∞∑
i=1

L1(Ai) + ε.

It follows that (1.3) holds.

1.22 We begin by showing that µ satisfies conditions (1.1)–(1.4) and is hence a
measure.

First,

µ(Ø) = L1({x : (x, f (x)) ∈ Ø}) = L1(Ø) = 0

and so (1.1) is satisfied.

Second, if A ⊂ B, then {x : (x, f (x)) ∈ A} ⊂ {x : (x, f (x)) ∈ B} and so,
since L1 is a measure,

µ(A) = L1 ({x : (x, f (x)) ∈ A}) ≤ L1 ({x : (x, f (x)) ∈ B}) = µ(B)

so that (1.2) is satisfied.

Finally, if A1, A2, . . . is a sequence of sets, then, since L1 is a measure,

µ

( ∞⋃
i=1

Ai

)
= L1

({
x : (x, f (x)) ∈

∞⋃
i=1

Ai

})

= L1

( ∞⋃
i=1

{x : (x, f (x)) ∈ Ai}
)

≤
∞∑
i=1

L1({x : (x, f (x)) ∈ Ai}) =
∞∑
i=1

µ(Ai)
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so that (1.3) is satisfied. If the sets Ai are disjoint Borel sets then, since L1

is a measure,

µ

( ∞⋃
i=1

Ai

)
= L1

({
x : (x, f (x)) ∈

∞⋃
i=1

Ai

})

= L1

( ∞⋃
i=1

{x : (x, f (x)) ∈ Ai}
)

=
∞∑
i=1

L1({x : (x, f (x)) ∈ Ai}) =
∞∑
i=1

µ(Ai)

so that (1.4) is satisfied.

Thus µ is a measure on R2. We now show that µ is supported by the
graph of f . We begin by noting that, since [0, 1] is compact (that is, closed
and bounded) and the map F defined by F(x) = (x, f (x)) is continuous,
then the graph of f which is equal to F([0, 1]) is also compact and hence
closed. Clearly,

µ(R2\graphf ) = L1({x : (x, f (x)) ∈ R2\graphf }) = L1(Ø) = 0.

Now let a ∈ [0, 1] and let r > 0. Since f is continuous, a belongs to a non-
trivial interval Ir ⊂ [0, 1] such that, for each x ∈ Ir , we have (x, f (x)) ∈
B((a, f (a)), r) and hence

µ(B((a, f (a)), r)) = L1({x : (x, f (x)) ∈ B((a, f (a)), r)}) ≥ L1(Ir ) > 0.

Thus graphf is the smallest closed set X such that µ(R2\X) > 0; that is,
graphf is the support of µ.

Finally,

µ(graphf ) = L1([0, 1]) = 1

so that 0 < µ(graphf ) < ∞ and hence µ is a mass distribution.

1.23 For positive integers m, n define sets

Am,n =
{
x ∈ D : |fk(x) − f (x)| <

1

m
for all k ≥ n

}
.

For each m the sequence of sets Am,1 ⊂ Am,2 ⊂ Am,2 ⊂ . . . is increasing
with
⋃∞

n=1 Am,n = D, so by (1.6) there is a positive integer nm such that
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µ(D\Am,n) < 2−mε for all n ≥ nm. Define A =⋂∞
m=1 Am,nm . Then

µ(D \ A) ≤ µ

( ∞⋃
m=1

D\Am,nm

)
≤

∞∑
m=1

ε

2m
≤ ε.

Let δ > 0 and take m > 1/δ. If x ∈ A, then x ∈ Am,nm , so |fk(x) − f (x)| <
1
m

< δ for all k ≥ nm, so fk(x) → f (x) uniformly on A.

1.24 For n = 1, 2, . . . let Dn = {x : f (x) ≥ 1/n}. Then

0 =
∫

D

f dµ ≥
∫

D

1

n
χDndµ = 1

n
µ(Dn),

since 1
n
χDn is a simple function. Thus µ(Dn) = 0 for all n. Since {x :

f (x) > 0} =⋃∞
n=1 Dn, it follows that µ{x : f (x) > 0} = 0, that is f (x) =

0 for almost all x.

1.25 E((X − E(X))2) = E(X2 − 2XE(X) + E(X)2) = E(X2) − 2E(X)E(X)+
E(X)2 = E(X2) − E(X)2.

1.26 The uniform distribution on [a, b] has p.d.f. f (u) = 1/(a − b) for a ≤ u ≤
b and f (u) = 0 otherwise. Thus

E(X) = (a − b)−1
∫ b

a

udu = (a − b)−1
[

1

2
u2
]b

a

= 1

2
(b2 − a2)/(b − a) = 1

2
(a + b).

E(X2) = (a − b)−1
∫ b

a

u2du = (a − b)−1
[

1

3
u3
]b

a

= 1

3
(b3 − a3)/(b − a) = 1

3
(a2 + ab + b2).

Thus

var(X) = E(X2) − E(X)2 = 1

3
(a2 + ab + b2) − 1

4
(a + b)2

= 1

12
(a2 − 2ab + b2) = 1

12
(a − b)2.

1.27 Define random variables Xk by Xk = 0 if ω /∈ Ak and Xk = 1 if ω ∈ Ak.

Then Nk = X1 + · · · + Xk, so by the strong law of large numbers (1.25),
Nk/k → E(Xk) = p. Thus taking Ak to be the event that the kth trial is
successful, Nk/k is the proportion of successes, which converges to p, the
probability of success.
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1.28 With Xk = 1 if a six is scored on he kth throw and 0 otherwise, and
Sk = X1 + · · · + Xk as the number of sixes in the first k throws, Xk has

mean m = 1
6 and variance σ 2 = 1

6

(
5
6

)2 + 5
6

(
1
6

)2 = 5
36 . By (1.26)

P(Sk ≥ 1050) = P
(

Sk − 1000√
5/36

√
6000

≥
√

3

)

�
∫ ∞

√
3

1√
2π

exp

(
−1

2
u2
)

du = 0.075.

Chapter 2

2.1 Put

Hs

δ(F ) = inf

{∑
i

|Ui |s : {Ui} is a δ-cover of F by closed sets

}
.

Since we have reduced the class of permissible covers by restricting to
covers by closed sets, we must have Hs

δ(F ) ≥ Hs
δ(F ). Now suppose that

{Ui} is a δ-cover of F . Since the closure Ui of Ui satisfies |Ui | = |Ui |,
it follows that {Ui} is a δ-cover of F by closed sets with

∑
i |Ui |s =∑

i |Ui |s . Since this is true for every δ-cover of F , it follows that Hs

δ(F ) ≤
Hs

δ(F ). Thus Hs

δ(F ) = Hs
δ(F ) for all δ > 0 and so the value of Hs(F ) =

limδ→0 Hs
δ(F ) is unaltered if we only consider δ-covers by closed sets.

2.2 Suppose that {Ui} is a δ-cover of F . For any set Ui in the cover we have
|Ui |0 = 1 and so

∑
i |Ui |0 is equal to the number of sets in the cover. Thus

H0
δ (F ) is the smallest number of sets that form a δ-cover of F .

If F has k points, x1, x2, . . . , xk , then the k balls of radius δ/2 with centers
at x1, x2, . . . , xk form a δ-cover of F and so H0

δ (F ) ≤ k. Moreover, if
δ > 0 is so small that |xi − xj | > δ for all i �= j , then any δ-cover of F

must contain at least k sets and so H0
δ (F ) ≥ k. So, for δ small enough, we

have H0
δ (F ) = k and hence H0(F ) = limδ→0 H0

δ (F ) = k.

Finally, if F has infinitely many points, then for each positive integer k, we
can take a set Fk ⊂ F such that Fk has k points. Then H0(F ) ≥ H0(Fk) = k

for all k, so H0(F ) = ∞.

2.3 Clearly, for every 0 < ε ≤ δ, we may cover the empty set with a single set
of diameter ε, so 0 ≤ Hs

δ(Ø) ≤ εs for all ε > 0, giving Hs
δ(Ø) = 0. Thus

Hs(F ) = limδ→0 Hs
δ(F ) = 0.

If E ⊂ F , every δ-cover of F is also a δ-cover of E, so taking the infimum
over all δ-covers gives Hs

δ(E) ≤ Hs
δ(F ) for all δ > 0. Letting δ → 0 gives

Hδ(E) ≤ Hδ(F ).
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Now let F1, F2, . . . be subsets of Rn. Without loss of generality, we may
assume that

∑∞
i=1 Hs

δ(Fi) < ∞. For ε > 0 let {Ui,j : j = 1, 2, . . . } be a
δ-cover of Fi such that

∑∞
j=1 |Ui,j |s ≤ Hs

δ(Fi) + 2−iε. Then {Ui,j : i =
1, 2, . . . , j = 1, 2, . . . } is a δ-cover of

⋃∞
i=1 Fi and

Hs
δ

( ∞⋃
i=1

Fi

)
≤

∞∑
i=1

∞∑
j=1

|Ui,j |s ≤
∞∑
i=1

(
Hs

δ(Fi) + ε

2i

)
= ε +

∞∑
i=1

Hs
δ(Fi)

≤ ε +
∞∑
i=1

Hs(Fi).

Since this is true for every ε > 0, it follows that

Hs

( ∞⋃
i=1

Fi

)
= lim

δ→0
Hs

δ

( ∞⋃
i=1

Fi

)
≤

∞∑
i=1

Hs(Fi)

as required.

2.4 Note that in calculating Hs
δ([0, 1]) it is enough to consider coverings by

intervals.

If 0 ≤ s < 1 and {Ui} is a δ-cover of [0, 1] by intervals, then

1 ≤
∑

i

|Ui | =
∑

i

|Ui |1−s |Ui |s ≤ δ1−s
∑

i

|Ui |s .

Hence Hs
δ([0, 1]) ≥ δs−1, so letting δ → 0 gives Hs([0, 1]) = ∞.

For s > 1, we may cover [0, 1] by at most (1 + 1/δ) intervals of length
δ, so

Hs
δ([0, 1]) ≤ (1 + 1/δ)δs → 0

as δ → 0, so Hs([0, 1]) = 0.

For s = 1, if {Ui} is a δ-cover of [0, 1] by intervals, then 1 ≤∑i |Ui |, so
H1

δ ([0, 1]) ≥ 1, and letting δ → 0 gives H1([0, 1]) ≥ 1.

Taking a cover [0, 1] by at most (1 + 1/δ) intervals of length δ,

H1
δ ([0, 1]) ≤ (1 + 1/δ)δ → 1

as δ → 0, so H1([0, 1]) ≥ 1. We conclude that H1([0, 1]) = 1.
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2.5 First suppose that F is bounded, say F ⊂ [−m,m]. By the mean value
theorem, for some z ∈ [−m,m],

|f (x) − f (y)| = |f ′(z)||x − y| ≤
(

sup
z∈[−m,m]

|f ′(z)|
)

|x − y|

Since f ′(z) is continuous it is bounded on [−m,m]. Thus f is Lips-
chitz on F , so dimHf (F ) ≤ dimH(F ) by Corollary 2.4. For arbitrary F ⊂
R, f (F ) =⋃∞

m=1 f (Fn ∩ [−m,m]), so by countable stability

dimHf (F ) = sup
m

dimHf (Fn ∩ [−m,m]) ≤ sup
m

dimH(Fn ∩ [−m,m])

≤ dimHF,

by the bounded case.

2.6 Let Fk = F ∩ [1/k, k]. If x, y ∈ Fk , then

|f (x) − f (y)| = |x2 − y2| = |x − y||x + y|
and so

2

k
|x − y| ≤ |f (x) − f (y)| ≤ 2k|x − y|.

Thus f is a bi-Lipschitz map on Fk and so, by Corollary 2.4, dimHf (Fk) =
dimHFk . Similarly, if Gk = F ∩ [−k,−1/k], then dimHf (Gk) = dimHGk .

Now F = (F ∩ {0}) ∪⋃∞
k=1(Fk ∪ Gk) and f (F ) = f (F ∩ {0}) ∪⋃∞

k=1
(f (Fk) ∪ f (Gk)). Since F ∩ {0} and f (F ∩ {0}) contain at most one point,
they both have zero dimension. Thus, by countable stability,

dimHF = sup{dimHFk, dimHGk : k = 1, 2, . . . }
= sup{dimHf (Fk), dimHf (Gk) : k = 1, 2, . . . } = dimHf (F ).

[Note that this result is not true for box dimension. For example, using
Example 3.5 and Exercise 3.11 we see that dimBf (F ) �= dimBF when
F = {0, 1, 1

2 , 1
3 , . . . }.]

2.7 Define g : [0, 1] → graphf by g(x) = (x, f (x)). We claim that g is bi-
Lipschitz. For:

|g(x) − g(y)|2 = |x − y|2 + |f (x) − f (y)|2

so

|x − y|2 ≤ |g(x) − g(y)|2 ≤ |x − y|2 + c2|x − y|2 = (1 + c2)|x − y|2

since |f (x) − f (y)| ≤ c|x − y| for some c > 0. Thus g is bi-Lipschitz, so
1 = dimH([0, 1]) = dimHg([0, 1]) = dimHgraphf .
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2.8 Both {0, 1, 2, 3, . . . } and {0, 1, 1
2 , 1

3 , . . . } are countable sets, so have Haus-
dorff dimension 0.

2.9 Note that F splits into 9 parts Fi = F ∩ [i/10, (i + 1)/10] for i = 0, 1, 2, 3,

4, 6, 7, 8, 9, these parts disjoint except possibly for endpoints which have
s-dimensional measure 0 if s > 0. It follows from Scaling property 2.1 that,
for s > 0, Hs(Fi) = 10−sHs(F ) for all i. Summing, and using that F is
essentially a disjoint union of the Fi , it follows that, for s > 0,

Hs(F ) =
∑

i=0,1,2,3,4,6,7,8,9

Hs(Fi) = 9 × 10−sHs(F ).

If we assume that when s = dimHF we have 0 < Hs(F ) < ∞, then, for
this value of s, we may divide through by Hs(F ) to obtain 1 = 9 × 10−s

and hence s = dimHF = log 9/ log 10 = 0.954 . . . .

2.10 Note that, for i, j = 0, 1, 2, 3, 4, 6, 7, 8, 9 the sets F ∩ ([i/10, (i + 1)/10] ×
[j/10, (j + 1)/10]) are scale 1/10 similar copies of F . By the addition and
scaling properties of Hausdorff measure,

Hs(F ) =
∑
i,j �=5

Hs(F ∩ ([i/10, (i + 1)/10] × [j/10, (j + 1)/10])

= 9210−sHs(F ),

provided 0 < Hs(F ) < ∞ when s = dimHF , in which case 1 = 9210−s ,
giving s = 2 log 9/ log 10 = 1.908 . . . .

2.11 The set F comprises one similar copy of itself at scale 1
2 , say F0, and four

similar copies at scale 1
4 , say F1, F2, F3, F4. By the additive and scaling

properties of Hausdorff measure, noting that the Fi intersect only in single
points,

Hs(F ) = Hs(F0) +
4∑

i=1

Hs(Fi) =
(

1

2

)s

Hs(F ) + 4

(
1

4

)s

Hs(F )

for s > 0. Provided 0 < Hs(F ) < ∞ when s = dimHF , we have 1 =
(

1
2

)s +
4
(

1
2

)s
. Thus 4

(
1
2
s
)2 +
(

1
2

)s − 1 = 0; solving this quadratic equation in(
1
2

)s
gives
(

1
2

)s = (−1 + √
17)/8 as the positive solution, so s = (log 8 −

log(
√

17 − 1))/ log 2 = 1.357 . . . .

2.12 F is the union of countably many translates of the middle third Can-
tor set, all of which have Hausdorff dimension log 2/ log 3, so dimHF =
log 2/ log 3 = 0.6309 . . . using countable stability.
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2.13 F is the union, over all finite sequences a1, a2, . . . , ak of the digits 0, 1, 2,
of similar copies of the middle third Cantor set scaled by a factor 3−k and
translated to have left hand end at 0.a1a2 . . . ak , to base 3. Thus F is the
union of countably many similar copies of the Cantor set, so dimHF =
log 2/ log 3 using countable stability.

2.14 The set F is the union of two disjoint similar copies of itself, FL, FR,
say, at scales 1

2 (1 − λ). By the additive and scaling properties of Hausdorff
measure

Hs(F ) = Hs(FL) + Hs(FR) = 2

(
1

2
(1 − λ)

)s

Hs(F )

for s ≥ 0. Provided 0 < Hs(F ) < ∞ when s = dimHF , we have 1 = 2(
1
2 (1 − λ)

)s
, giving that dimHF = log 2/ log(2/(1 − λ)).

The set E is the union of four disjoint similar copies of itself, E1, E2, E3, E4,
say, at scales 1

2 (1 − λ). By the additive and scaling properties of Hausdorff
measure

Hs(F ) =
4∑

i=1

Hs(Fi) = 4

(
1

2
(1 − λ)

)s

Hs(F )

for s ≥ 0. Provided 0 < Hs(F ) < ∞ when s = dimHF , we have 1 = 4(
1
2 (1 − λ)

)s
, giving that dimHF = log 4/ log(2/(1 − λ)) = 2 log 2/ log(2/

(1 − λ)).

2.15 Take the unit square E0 and divide it into 16 squares of side 1/4. Now take
0 < r < 1/4, put a square of side r in the middle of each of the 16 small
squares and discard everything that is not inside one of these squares, to
get a set E1.

Keep on repeating this process so that, at the k-th stage, there is a collec-
tion Ek of 16k disjoint squares of side rk . Then Fr =⋂k Ek is a totally
disconnected subset of R2. (If two points x, y are in the same component
of Fr , then they must belong to the same square in Ek , for all k = 1, 2, . . . .
Thus |x − y| ≤ √

2rk , for each k = 1, 2, . . . , and hence |x − y| = 0 so that
x = y.)

The set Fr is made up of 16 disjoint similar copies of itself, each scaled
by a factor r , denote these sets as Fr,1, . . . , Fr,16. It follows from Scaling
property 2.1 that, for s ≥ 0,

Hs(Fr) =
16∑
i=1

Hs(Fr,i ) =
16∑
i=1

rsHs(Fr).
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Assuming that when s = dimHFr we have 0 < Hs(Fr) < ∞ (using the
heuristic method), then, for this value of s we may divide by Hs(Fr) to
obtain 1 = 16rs and so s = dimHFr = − log 16/ log r . As r increases from
0 to 1/4, dimHFr increases from 0 to 2, taking every value in between.

A set consisting of a single point gives a totally disconnected subset of
R2 of Hausdorff dimension zero. It remains to show that there exists a
totally disconnected subset of R2 of Hausdorff dimension two. For one of
many ways to do this, let G =⋃∞

k=5 Gk , where Gk = F1/4−1/k + (k, 0).
The sets Gk are disjoint and hence G is a totally disconnected subset of
R2. By countable stability, we have

dimHG = sup
5≤k≤∞

dimHGk = sup
5≤k≤∞

dimH(F1/4−1/k) = 2,

using that Gk is congruent to F1/4−1/k, whose dimension tends to 2 as
k → ∞.

2.16 Note that F is just a copy of the middle third Cantor set scaled by 1
3π .

Thus dimHF = log 2/ log 3 = 0.6309 . . . .

2.17 We use the notation of Section 2.5. Let Ui be a δ-cover of F . Then

∑
h(|Ui |) =

∑
(h(|Ui |)/g(|Ui |))g(|Ui |) ≤ η(δ)

∑
g(|Ui |)

where η(δ) = sup0<t≤δ h(t)/g(t). Taking infima, Hh
δ (F ) ≤ η(δ)Hg

δ (F ). Let-
ting δ → 0, then η(δ) → 0, and Hg

δ (F ) → Hg(F ) < ∞, so Hh
δ (F ) → 0,

that is Hh(F ) = 0.

Chapter 3

3.1 Suppose that F can be covered by Nδ(F ) sets of diameter at most δ. Then,
by the Lipschitz condition, the Nδ(F ) images of these sets under f form a
cover of f (F ) by sets of diameter at most cδ. So, considering values of δ

for which cδ < 1, we have

dimBf (F ) = limcδ→0
log Ncδ(f (F ))

− log cδ
≤ limδ→0

log Nδ(F )

− log δ − log c

= limδ→0
log Nδ(F )

− log δ
= dimBF.

Note that we could replace upper limits by lower limits throughout the
above argument to get the corresponding result for lower box dimensions.



18 Solutions to Exercises

Now suppose that f satisfies the Hölder condition

|f (x) − f (y)| ≤ c|x − y|α (x, y ∈ F).

Suppose that F can be covered by Nδ(F ) sets of diameter at most δ. Then
the Nδ(F ) images of these sets under f form a cover of f (F ) by sets of
diameter at most cδα . Thus

dimBf (F ) = limcδα→0
log Ncδα (f (F ))

− log cδα
≤ limδ→0

log Nδ(F )

−α log δ − log c

= 1

α
limδ→0

log Nδ(F )

− log δ
= 1

α
dimBF.

Again, a similar argument gives the result for lower box dimensions.

3.2 Let F be a subset of Rn, let Nδ(F ) denote the smallest number of closed
balls of radius δ that cover F and let N ′

δ(F ) denote the number of δ-mesh
cubes that intersect F .

For each δ-mesh cube that intersects F , take a closed ball of radius δ
√

n

whose centre is at the centre of the cube; the ball clearly contains the cube
(whose diagonal is of length δ

√
n) and so Nδ

√
n(F ) ≤ N ′

δ(F ). On the other
hand, any closed ball of radius δ intersects at most 4n δ-mesh cubes and so
N ′

δ(F ) ≤ 4nNδ(F ). Combining:

Nδ
√

n(F ) ≤ N ′
δ(F ) ≤ 4nNδ(F )

so that if δ
√

n < 1, then

log Nδ
√

n(F )

− log δ
≤ log N ′

δ(F )

− log δ
≤ log 4nNδ(F )

− log δ

so
log Nδ

√
n(F )

− log δ
√

n + log
√

n
≤ log N ′

δ(F )

− log δ
≤ log 4n + log Nδ(F )

− log δ
.

Taking lower limits as δ → 0, so that also δ
√

n → 0, we get that

limδ→0
log Nδ(F )

− log δ
≤ limδ→0

log N ′
δ(F )

− log δ
limδ→0

log Nδ(F )

− log δ
,

so these terms are equal; in other words the value of the expression for
lower box-counting dimension is the same for both Nδ(F ) (using definition
(i) of lower box dimension), and N ′

δ(F ) (using definition (iii)).

The correspondence of the two definitions of upper box dimension follows
in exactly the same way but taking upper limits.
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3.3 Let Ek denote those numbers in [0, 1] whose expansions do not contain
the digit 5 in the first k decimal places. Then F =⋂∞

k=1 Ek . Let Nδ(F )

denote the least number of intervals of length δ that can cover F . Let k be
the integer such that 10−k ≤ δ < 10−k−1. Since Ek may be regarded as the
union of 9k intervals of lengths 10−k , we get Nδ(F ) ≤ 9k , so

dimBF = limδ→0
log Nδ(F )

− log δ
≤ limk→∞

log 9k

− log 10−k−1

≤ limk→∞
k log 9

(k + 1) log 10
= log 9

log 10
.

Now let 0 < δ < 1 and let k be the integer such that 10−k+1 ≤ δ < 10−k .
Since any set of diameter δ can intersect at most two of the component
intervals of Ek of length 10−k and each such component interval contains
points of F , at least 1

2 9k intervals of length δ are needed to cover F . Thus
Nδ(F ) ≥ 1

2 9k , so

dimBF = limδ→0
log Nδ(F )

− log δ
≥ limk→∞

log 1
2 9k

− log 10−k+1

≥ limk→∞
k log 9 − log 2

(k − 1) log 10
= log 9

log 10
= 0.954 . . . .

We conclude that the box dimension of F exists, with dimBF = log 9/ log 10.

3.4 Let Nδ(F ) denote the smallest number of squares (that is, 2-dimensional
cubes) of side δ that cover F . We will use the fact (see after Equivalent
definitions 3.1) that, if δk = 4−k , then

dimBF = lim
k→∞

log Nδk
(F )

− log δk

,

if this limit exists.

It follows from the construction of F shown in figure 0.4 that Nδk
(F ) ≤ 4k

and so

dimBF = limk→∞
log Nδk

(F )

− log δk

≤ limk→∞
log 4k

log 4k
= 1.

On the other hand, any square of side δk = 4−k intersects at most two of
the squares of side δk in Ek . Since F meets every one of the 4k squares
which comprise Ek , it follows that Nδk

(F ) ≥ 1
2 4k , so

dimBF = limk→∞
log Nδk

(F )

− log δk

≥ limk→∞
log 1

2 4k

log 4k

= limk→∞
k log 4 − log 2

k log 4
= 1.

Thus dimBF = 1.
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3.5 Let Nδ(F ) denote the smallest number of sets of diameter at most δ that
cover F and let δk = 3−k . For each of the straight line segments that makes
up Ek , take a closed disc of diameter δk , centred at the midpoint of the line.
There are 4k such discs and they cover F , so that (see Equivalent definitions
3.1 and comments following)

dimBF = limk→∞
log Nδk

(F )

− log δk

≤ limk→∞
log 4k

log 3k
= log 4

log 3
.

Now let Nδ(F ) denote the largest number of disjoint balls of radius δ

with centres in F . The 4k straight line segments that make up Ek have
4k + 1 distinct endpoints, each of which belongs to F . Balls of radius
1/3k+1 centred at these endpoints are mutually disjoint and so, putting
δk = 3−(k+1), we have by Equivalent definition (v), that

dimBF = limk→∞
log Nδk

(F )

− log δk

≥ limk→∞
log(4k + 1)

log 3k+1

≥ limk→∞
log(4k)

log 3k+1
= limk→∞

k log 4

(k + 1) log 3
= log 4

log 3
= 1.262.

3.6 Let Nδ(F ) denote the smallest number of squares (that is, 2-dimensional
cubes) of side δ that cover F . For k = 1, 2, . . . , the Sierpiński triangle F

can be covered by 3k squares of side 2−k and so, putting δk = 2−k , we
have

dimBF = limk→∞
log Nδk

(F )

− log δk

≤ limk→∞
log 3k

log 2k
= log 3

log 2
.

Now let Nδ(F ) denote the largest number of disjoint balls of radius δ with
centres in F . The top vertex of each of the 3k triangles in Ek belongs to F

and balls of radius 1/2k+1 centered at these vertices are mutually disjoint.
So, putting δk = 2−(k+1), we have

dimBF = limk→∞
log Nδk

(F )

− log δk

≥ limk→∞
log 3k

log 2k+1
= log 3

log 2
.

Thus dimBF = log 3/ log 2 = 1.585 . . . .

3.7 The middle third Cantor set has 2k gaps of length 3−k−1 for k = 0, 1, 2, . . . .
If 1

2 3−k < δ ≤ 1
2 3−k−1 the δ-neighbourhood fills the gaps of lengths 3−k

or less, and has two parts of length δ in the gaps of length 3−k−1 or more.
Summing these lengths over all gaps, and noting that the parts of Fδ at
each end of F have length δ, gives

L(Fδ) =
∞∑
i=k

2i−13−i + 2δ

k−1∑
i=1

2i−1 + 2δ

=
(

2

3

)k−1

+ 2kδ
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on summing the geometric series. Hence

2kδ ≤ L(Fδ) ≤ 2kδ +
(

2

3

)k−1

≤ 4 × 2kδ

or
c1δ

1−log 2/ log 3δ ≤ L(Fδ) ≤ c2δ
1−log 2/ log 3.

Hence Proposition 3.2 gives that dimBF = log 2/ log 3

3.8 The idea is to construct a set such at some scales a relatively large number
of boxes are needed in a covering and at other scales one can manage
with relatively few. We adapt the middle third Cantor set by deleting the
middle 3/5 of intervals at certain scales rather than the middle 1/3. Thus
set kn = 10n, for n = 0, 1, 2, . . . and let E =⋂∞

k=0 Ek , where E0 = [0, 1],
and

• for k0 ≤ k ≤ k1, k2 < k ≤ k3, . . . , Ek is obtained by deleting the middle
1/3 of each interval in Ek−1;

• for k1 < k ≤ k2, k3 < k ≤ k4, . . . , Ek is obtained by deleting the middle
3/5 of each interval in Ek−1.

We estimate the lower and upper box dimensions of E by estimating Nδ(E),
the least number of closed intervals of length δ that can cover E. (i) If n

is even, then Ekn is made up of 2kn intervals of length

δn =
(

1

3

)k1
(

1

5

)k2−k1

· · ·
(

1

3

)kn−1−kn−2
(

1

5

)kn−kn−1

<

(
1

5

)kn−kn−1

.

Taking these intervals as a cover

dimBE ≤ limn→∞
log Nδn(E)

− log δn

≤ limn→∞
log 2kn

log 5kn−kn−1

= limn→∞
kn log 2

(kn − kn−1) log 5
= limn→∞

10kn−1 log 2

9kn−1 log 5
= 10 log 2

9 log 5
.

(ii) If n is odd, then Ekn is made up of 2kn intervals of length

δn =
(

1

3

)k1
(

1

5

)k2−k1

· · ·
(

1

5

)kn−1−kn−2
(

1

3

)kn−kn−1

>

(
1

5

)kn−1
(

1

3

)kn−kn−1

.
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Any interval of length δn meets at most two of the intervals in Ekn and so,
since E has points in every interval in Ekn ,

dimBE ≥ limn→∞
log Nδn(E)

− log δn

≥ limn→∞
log(2kn/2)

log(5kn−13kn−kn−1)

= limn→∞
kn log 2 − log 2

kn−1 log 5 + (kn − kn−1) log 3

= limn→∞
10kn−1 log 2 − log 2

kn−1 log 5 + 9kn−1 log 3

= 10 log 2

log 5 + 9 log 3
≥ 10 log 2

11 log 3
.

Since

10 log 2

9 log 5
<

10 log 2

11 log 3

dimBE < dimBE,

as required.

3.9 By monotonicity, dimB(E ∪ F) ≥ max{dimBE, dimBF }.
Let Nδ(F ) denote the least number of intervals of length δ that can cover
a set F . Then Nδ(E ∪ F) ≤ Nδ(E) + Nδ(F ) ≤ 2 max{Nδ(E), Nδ(F )}, so

dimB(E ∪ F) = limδ→0
log Nδ(E ∪ F)

− log δ

≤ limδ→0
log(2 max{Nδ(E), Nδ(F )})

− log δ

≤ limδ→0
log 2

− log δ
+ limδ→0 max

{
log Nδ(E)

− log δ
,

log Nδ(F )

− log δ

}

≤ 0 + max

{
limδ→0

log Nδ(E)

− log δ
, limδ→0

log Nδ(F )

− log δ

}

= max{dimB(E), dimB(F )}.

Note that we cannot interchange ‘max’ and ‘lim’ in the same way, so the
argument fails for lower box dimensions.

3.10 The idea is to construct sets E and F such that at every scale one of E or
F looks ‘large’ and the other looks ‘small’. Let E be the set described in
the Solution to Exercise 3.8. We construct a set F in a similar way, except
that the scaling of intervals is complementary and the set is positioned to
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be disjoint from E. Thus set kn = 10n, for n = 0, 1, 2, . . . and let F =⋂∞
k=0 Fk , where F0 = [2, 3], and

• for k0 ≤ k ≤ k1, k2 < k ≤ k3, . . . , Fk is obtained by deleting the middle
3/5 of each interval in Fk−1;

• for k1 < k ≤ k2, k3 < k ≤ k4, . . . , Fk is obtained by deleting the middle
1/3 of each interval in Fk−1.

As in the solution to Exercise 3.8 we get that

dimBE, dimBF ≤ 10 log 2

9 log 5
.

For each k = 1, 2, . . . , let δk denote the length of the longest intervals in
Ek ∪ Fk: there are 2k such intervals, each of which meets E ∪ F . Since
any other interval of length δk meets at most two of these intervals, it
follows that the smallest number of closed intervals of length δk that cover

E ∪ F satisfies Nδk
(E ∪ F) ≥ 2k/2. Now δk ≥

(
1
3

)k/2 (
1
5

)k/2
and δk ≥

(1/5)δk−1, so by the note after Definitions 3.1

dimBE ∪ F = limδk→0
log Nδk

(E ∪ F)

− log δk

≥ limk→∞
log 2k/2

log 5k/2 log 3k/2

= limk→∞
k log 2 − log 2

(k/2) log 5 + (k/2) log 3
= 2 log 2

log 5 + log 3
>

10 log 2

9 log 5
.

3.11 Since F is a countable set, dimHF = 0.

The box dimension calculation is similar to Example 3.5. Let Nδ(F ) be the
smallest number of sets of diameter at most δ that cover F . If |U | = δ < 1/2
and k is the integer satisfying

2k − 1

k2(k − 1)2
= 1

(k − 1)2
− 1

k2
> δ ≥ 1

k2
− 1

(k + 1)2
= 2k + 1

(k + 1)2k2
,

then U can cover at most one of the points
{

1, 1
4 , . . . , 1

k2

}
. Thus Nδ(F ) ≥ k

and hence

dimBF = limδ→0
log Nδ(F )

− log δ
≥ limk→∞

log k

log (k+1)2k2

2k+1

= limk→∞
log k

2 log(k + 1) + 2 log k − log 2 − log(k + 1/2)
= 1

3
.
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On the other hand, if

1

k(k − 1)2
> δ ≥ 1

(k + 1)k2
,

then k + 1 intervals of length δ cover [0, 1/k2] leaving k − 1 points of F

which can be covered by k − 1 intervals of length δ. Thus

dimBF = limδ→0
log Nδ(F )

− log δ
≤ limk→∞

log 2k

log k(k − 1)2

= limk→∞
log k + log 2

log k + 2 log(k − 1)
= 1

3
.

Thus dimBF = 1/3.

3.12 Let E = [0, 1] ∩ Q and F = {x ∈ [0, 1] : x − √
2 ∈ Q}, so that E and F

are disjoint dense subsets of [0, 1]. If {Bi} is any collection of disjoint balls
(i.e. intervals) with centres in E and radii at most δ, then, by considering
the lengths of the Bi , we see that

∑
i |Bi | ≤ 1 + δ. Moreover, taking Bi as

nearly abutting intervals of lengths 2δ we can get
∑

i |Bi | ≥ 1. Thus, since

P1
δ (E) = sup

{∑
i

|Bi | : {Bi}are disjoint balls of radii

≤ δ with centres in F

}
,

we get 1 ≤ P1
δ (E) ≤ 1 + δ. Letting δ → 0 gives P1

0 (E) = 1. In a similar
way, P1

0 (E) = 1 and P1
0 (E ∪ F) = 1. In particular P1

0 (E ∪ F) �= P1
0 (E) +

P1
0 (F ).

3.13 The von Koch curve F has (upper and lower) box dimensions equal to
log 4/ log 3. Moreover, by virtue of the self-similarity of F , dimB(F ∩ V ) =
log 4/ log 3 for every open set V that intersects F . By Corollary 3.9,
dimPF = dimBF = log 4/ log 3.

3.14 Recall that the divider dimension of a curveC is defined as limδ→0 log Mδ(C)/

− log δ (assuming that this limit exists), whereMδ(C) is the maximum number
of points x0, x1, . . . , xm on C, in that order, with |xi − xi−1| ≥ δ for i =
1, 2, . . . , m.

By inspection of the von Koch curve C, taken to have of baselength 1, (see
Figure 0.2), we have that if k is the integer such that 3−k−1 ≤ δ < 3−k ,



Solutions to Exercises 25

then 4k < 4k + 1 ≤ Mδ(C) ≤ 4k+1 + 1 < 4k+2. Then

k log 4

(k + 1) log 3
= log(4k)

− log(3−k−1)
≤ log Mδ(C)

− log δ
≤ log(4k+2)

− log(3−k)

(k + 2) log 4

log 3
.

As δ → 0, k → ∞, so taking limits gives that

divider dimension = lim
δ→0

log Mδ(C)

− log δ
= log 4

− log 3

(which, of course equals the Hausdorff and box dimensions of C).

3.15 Recall that the divider dimension of a curveC is defined as limδ→0 log Mδ(C)/

− log δ (assuming that this limit exists), whereMδ(C) is the maximum number
of points x0, x1, . . . , xm on C, in that order, with |xi − xi−1| ≥ δ for i =
1, 2, . . . , m.

Consider Equivalent definition 3.1(v) of box dimension, taking Nδ(C) to
be the greatest number of disjoint balls of radius δ with centres on C.
Then if B1, . . . , BNδ(C) is a maximal collection of disjoint balls of radii
δ with centres on C, every ball Bi must contain at least one point xj in
any maximal sequence of points x0, x1, . . . , x1 for the divider dimension,
otherwise the centre of Bi may be added to the sequence to increase its
length. Thus Nδ(C) ≤ Mδ(C), so

Nδ(C)

− log δ
≤ log Mδ(C)

− log δ
,

and taking limits as δ → 0 gives that the box dimension is less than or equal
to the divider dimension, assuming both exist. (If not a similar inequality
holds for lower and upper box and lower and upper divider dimensions.)

3.16 The middle λ Cantor set F may be constructed from the unit interval by

removing 2k open intervals of lengths λ
(

1
2 (1 − λ)

)k
for k = 0, 1, 2, . . . .

Thus, denoting these complementary intervals by Ii , we have

∑
i

|Ii |s =
∞∑

k=0

2kλs

(
1

2
(1 − λ)

)ks

.

This is a geometric series which converges if and only if the common ratio

2
(

1
2 (1 − λ)

)s
< 1, that is if s > log 2/ log(2/(1 − λ)), a number equal to

the Hausdorff and box dimensions of F , see Exercise 2.14.

3.17 If F1 ⊂ F2 then any δ-cover of F2 by rectangles is also a δ-cover of F1,
so that from the definition, Hs,t

δ (F1) ≤ Hs,t
δ (F2), and letting δ → 0 gives

Hs,t (F1) ≤ Hs,t (F2). In particular, if (s, t) ∈ printF1 then 0 < Hs,t (F1) so
0 < Hs,t (F2) giving (s, t) ∈ printF2. Thus printF1 ⊂ printF2.
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It follows at once that printFk ⊂ print
(⋃∞

i=1 Fi

)
for all k, so that

⋃∞
i=1

printFi ⊂ print
(⋃∞

i=1 Fi

)
.

Now suppose (s, t) /∈ printFi for all i. Then Hs,t (Fi) = 0 for all i, so
Hs,t
(⋃∞

i=1 Fi

) = 0 since Hs,t is a measure. We conclude that (s, t) /∈
print
(⋃∞

i=1 Fi

)
. Thus

⋃∞
i=1 printFi = print

(⋃∞
i=1 Fi

)
.

Suppose now that s′ + t ′ ≤ s + t and t ′ ≤ t . For any δ-cover of a set F by
rectangles Ui with sides a(Ui) ≥ b(Ui), we have

∑
i

a(Ui)
sb(Ui)

t ≤
∑

i

a(Ui)
s−s′

a(Ui)
s′
b(Ui)

t−t ′b(Ui)
t ′

≤
∑

i

a(Ui)
s′
b(Ui)

t ′a(Ui)
s−s′+t−t ′

≤ δ(s+t)−(s′+t ′)
∑

i

a(Ui)
s′
b(Ui)

t ′ .

It follows from the definition that if 0 < δ < 1 then Hs,t
δ (F ) ≤ Hs′,t ′

δ (F ), so
Hs,t (F ) ≤ Hs′,t ′(F ). Thus if (s, t) ∈ printF then 0 < Hs,t (F ) ≤ Hs′,t ′(F ),
so (s′, t ′) ∈ printF .

Since print(F1 ∪ F2) = printF1 ∪ printF2, taking F1 and F2 such that the
union of their dimension prints is not convex will give a set F1 ∪ F2 with
non-convex dimension print. Taking F1 a circle and F2 the product of
uniform Cantor sets of dimensions 1

3 and 3
4 , will achieve this, see figure 3.3.

Chapter 4

4.1 We begin by noting that the Cantor tartan is equal to (F × R) ∪ (R ×
F). In Example 4.3 it is shown that dimH(F × [0, 1]) = 1 + log 2/ log 3.
Now F × [n, n + 1] is a translate of F × [0, 1], so for each integer
n, dimH(F × [n, n + 1]) = 1 + log 2/ log 3. Thus, by countable stability,
dimH(F × R) = 1 + log 2/ log 3. As R × F is congruent to F × R under a
90 degree rotation, dimH(R × F) = 1 + log 2/ log 3. Finally,

dimH((F × R) ∪ (R × F))

= max{dimH(F × R), dimH(R × F)} = 1 + log 2

log 3
.

4.2 Let F be the set of numbers in [0, 1] containing only even digits. Writing
Ek for the set of numbers in [0, 1] containing only even digits in the first
k decimal places, we have that F =⋂∞

k=0 Ek . For each positive integer
k, the 5k intervals in Ek of length 10−k form a 10−k-cover of F and so



Solutions to Exercises 27

Hlog 5/ log 10
10−k (F ) ≤ 5k(10−k)log 5/ log 10 = 5k5−k = 1. Letting k → ∞ gives

Hlog 5/ log 10(F ) ≤ 1.

Now let µ be the natural mass distribution on F obtained by repeated
subdivision of mass into 5 equal parts, so that each of the 5k intervals of
length 10−k in Ek carries a mass of 5−k . If 10−(k+1) ≤ |U | < 10−k for
some k ≥ 1, then U can intersect at most one of the intervals in Ek and so

µ(U) ≤ 5−k = (10−k)log 5/ log 10 ≤ (10|U |)log 5/ log 10 = 5|U |log 5/ log 10.

It follows from the Mass distribution principle 4.2 that Hlog 5/ log 10(F ) ≥
1/5. Combining these results, we see that Hlog 5/ log 10(F ) is positive and
finite, so that dimHF = log 5/ log 10.

4.3 Let F be the Cantor dust depicted in figure 0.4. For each positive integer
k, the nk = 4k squares of diameter δk = 4−k

√
2 in Ek form a cover of F

and so it follows from Proposition 4.1 that

dimHF ≤ limk→∞
log 4k

− log(4−k
√

2)
= limk→∞

k log 4

k log 4 − log
√

2
= 1.

Now let µ be the natural mass distribution on F , so that each of the 4k

squares of side 4−k in Ek carries a mass of 4−k . If 4−(k+1) ≤ |U | < 4−k for
some k ≥ 1, then U can intersect at most one of the squares in Ek and so

µ(U) ≤ 4−k ≤ 4|U |.
It follows from the Mass distribution principle 4.2 that dimHF ≥ 1. Com-
bining these results, we deduce that dimHF = 1 as required.

4.4 If λ = 1
2 then F = [0, 1] so dimHF = dimBF = 1.

Thus assume 0 < λ < 1
2 . It is easy to see that F is a subset of the interval

[0, λ/(1 − λ)] and moreover F is the union of two similar copies of itself
at scale λ, that is F = (F ∩ [0, λ2/(1 − λ)]) ∪ (F ∩ [λ, λ/(1 − λ)]). Thus
F may be constructed by a Cantor-type construction, repeatedly replacing
intervals by a pair of subintervals each of length λ times that of the parent
interval. Let Ek be the set of 2k intervals of lengths λk+1/(1 − λ) obtained
at the kth stage of this construction. Then F =⋂∞

k=0 Ek . For each positive
integer k, the 2k intervals in Ek form a cover of F and so it follows from
Proposition 4.1 that

dimBF ≤ lim
k→∞

log 2k

− log λk+1/(1 − λ)

= lim
k→∞

k log 2

−(1 + k) log λ + log(1 − λ)
= log 2

− log λ
.
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Now let µ be the natural mass distribution on F so that each of the 2k

intervals of lengths λk+1/(1 − λ) in Ek carries a mass of 2−k . If λk+1(1 −
2λ)/(1 − λ) ≤ |U | < λk(1 − 2λ)/(1 − λ) for some k ≥ 1, then U can inter-
sect at most one of the intervals in Ek and so

µ(U) ≤ 2−k ≤ (λk)− log 2/ log λ ≤
(

1 − λ

λ(1 − 2λ)
|U |
)− log 2/ log λ

= c|U |− log 2/ log λ.

where c > 0 is independent of U . It follows from the Mass distribution prin-
ciple 4.2 that dimHF ≥ − log 2/ log λ. Combining these results, we deduce
that dimHF = dimBF = − log 2/ log λ.

4.5 Let E′
k be the set of 2k intervals of lengths 3−k obtained at the

kth stage of the usual construction of the middle third Cantor set.
Then Ek = E′

k × E′
k consists of 4k squares of sides 3−k and diame-

ters 3−k
√

2, and F × F = ⋂∞
k=0 Ek . For each positive integer k, the

4k squares in Ek form a 3−k
√

2-cover of F and so Hlog 4/ log 3

3−k
√

2
(F ) ≤

4k(3−k
√

2)log 4/ log 3 = 2log 2/ log 34k4−k = 2log 2/ log 3. Letting k → ∞ gives
Hlog 4/ log 3(F ) ≤ 2log 2/ log 3.

Now let µ be the natural mass distribution on F × F obtained by repeated
subdivision of mass into 4 equal parts, so that each of the 4k squares in
Ek carries a mass of 4−k . If 3−(k+1) ≤ |U | < 3−k for some k ≥ 1, then U

intersects at most one of the squares in Ek and so

µ(U) ≤ 4−k = (3−k)log 4/ log 3 ≤ (3|U |)log 4/ log 3 = 4|U |log 4/ log 3

It follows from the Mass distribution principle 4.2 that Hlog 4/ log 3(F ) ≥
1/4. Combining these results, we see that Hlog 4/ log 3(F ) is positive and
finite, so that dimHF = log 4/ log 3.

4.6 With F the middle third Cantor set, it is easily checked that

F0 ≡
(
F ∩
[

2
3 , 1
])

×
[
0, 1

3

]
⊂
{
(x, y) ∈ R2 : x ∈ F and 0 ≤ y ≤ x2

}
⊂

F × [0, 1] ≡ F1.

We showed in Example 4.3 that dimHF1 = 1 + log 2/ log 3, and F0 is a
similar copy of F1 at scale 1

3 , so dimHF0 = 1 + log 2/ log 3. It is immediate
that the dimension of the intermediate set is also 1 + log 2/ log 3.

4.7 Let F be the set described in Example 4.5. For each positive integer k,
the nk = mk intervals of length δk = λk in Ek form a cover of F and so
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Proposition 4.1 gives that

dimHF ≤ dimBF ≤ limk→∞
log mk

− log λk
= log m

− log λ
.

Since nkδ
log m/(− log λ)

k = mkλk log m/(− log λ) = 1, it also follows from Propo-
sition 4.1 that Hlog m/(− log λ)(F ) < ∞.

Now let µ be the natural mass distribution on F so that each of the mk

intervals of length λk in Ek carries a mass of m−k . If λ(k+1) ≤ |U | < λk

for some k ≥ 1, then U can intersect at most two of the intervals in Ek , so

µ(U) ≤ 2m−k = 2mm−(k+1) = 2mλ(k+1) log m/−log λ ≤ 2m|U |log m/−log λ.

It follows from the Mass distribution principle 4.2 that Hlog m/−log λ(F ) ≥
µ(F )/2m = 1/(2m) > 0 and dimHF ≥ log m/ − log λ. Combining these
results, we deduce that dimHF = dimBF = log m/ − log λ and 0 <

Hlog m/−log λ(F ) < ∞.

4.8 We show inductively that there are integers m and a2, a3, . . . with 0 ≤
aj ≤ j − 1, such that for all k = 1, 2, . . . , the number x may be expressed
in the form

x = m + a2

2!
+ · · · + ak

k!
+ yk (*)

where 0 ≤ yk < 1/k! . This is clear when k = 1 (expressing x as in integer
plus a fractional part), so suppose inductively that (∗) holds for some k ≥ 1.
Since 0 ≤ k!yk < 1, we may write k!yk = ak+1/(k + 1) + zk+1 where ak+1
is an integer and 0 ≤ zk+1 < 1/(k + 1). Thus yk = ak+1/(k + 1)! + yk+1,
where 0 ≤ yk+1 = zk+1/k! < 1/(k + 1)!. Substituting into (∗) gives the
same formula with k replaced by k + 1, completing the inductive step.

Letting k → ∞ in (∗) gives

x = m + a2

2!
+ a3

3!
+ · · · ,

convergence of the series following from comparison with the exponential
series.

To find the dimension of

F = {x = m + a2

2!
+ a3

3!
+ · · · : m = 0 and ak is even for k = 2, 3, . . . }

we use the result of Example 4.6. Writing

Ek = {x = a2

2!
+ a3

3!
+ · · · : a2, . . . , ak are even},
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we have F =⋂∞
k=1 Ek as in the general construction (4.3). Each interval

of Ek−1 contains mk = � 1
2k� intervals of Ek , with each interval of Ek of

length 1/k! and separated by at least εk = 1/k!. The formula of Example
4.6 gives

dimHF ≥ limk→∞
log m1 . . . mk−1

− log(mkεk)
= limk→∞

log 2.2.3.3 . . . � 1
2 (k − 1)�

− log(� 1
2k�/k!)

≥ limk→∞
log(� 1

2 (k − 2)�!2)

log k! − log 1
2k

= limk→∞
2( 1

4k log k)

1
2k log k − log 1

2k
= 1

where we have used Stirling’s formula in the form log n! ∼ 1
2 log 2π +

1
2 (n + 1

2 ) log n − n.

We conclude that dimHF = 1.

4.9 An easy way to do this is as follows. For each 0 < s < 1, there is a compact
set Es ⊂ [0, 1] such that dimHEs = s. (For example, the ‘middle λ Can-
tor set’, see after Example 4.5, has Hausdorff dimension log 2/ log(2/(1 −
λ)) for 0 < λ < 1, so taking λ = 1 − 21−1/s gives a suitable set Es .) For
n = 1, 2, . . . let Fn be a similar copy of E1−1/n, scaled and translated
so Fn ⊂ [1/n, 1/(n + 1)]. Then dimHFn = 1 − 1/n and H1(Fn) = 0. Set
F = {0} ∪⋃∞

n=1 Fn. Then F is compact, dimHF = sup1≤n<∞ dimHFn = 1,
and H1(F ) =∑∞

n=1 H1(Fn) = 0, as required.

4.10 First we show that if Hs(F ) = ∞ then for every c with 0 < c < ∞ there
is a Borel E ⊂ F such that c < Hs(E) < ∞. For suppose to the contrary.
Then a ≡ sup{Hs(E) : E is a Borel subset of F with Hs(E) < ∞} < ∞.
There is a Borel set E with Hs(E) = a (for if we take a sequence of
Borel sets Ek with Hs(Ek) ↗ a then Hs

(⋃∞
k=1 Ek

) = a). Thus F \ E is a
Borel set with Hs(F\E) ≥ Hs(F ) − Hs(E) = ∞. By Theorem 4.10, F\E
has a Borel subset G with Hs(G) > 0, so E ∪ G is a union of disjoint
Borel sets, so is Borel, with ∞ > Hs(E ∪ G) = Hs(E) + Hs(G) > a, a
contradiction.

Thus, given F with Hs(F ) = ∞ and 0 < c < ∞ let E0 be a Borel subset
of F such that c < Hs(E0) < ∞. Since E0 = E0 ∩⋃∞

n=1[−n, n] there is
an integer n such that c ≤ Hs(E0 ∩ [−n, n]) < ∞. The function φ given by
φ(x) = Hs(E0 ∩ [−n, x]) is continuous and increasing in x, by continuity
of finite measures, see Exercise 1.18. Since φ(−n) = 0 and φ(n) > c, the
intermediate value theorem gives that there is an x, −n < x < n such that
φ(x) = c. Thus E = E0 ∩ [−n, x] is a Borel subset of F with Hs(E) = c,
as required.

4.11 Consider the usual construction of the middle third Cantor set F , the kth
stage of the approximation Ek comprising 2k intervals of lengths 3−k . Let
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µ be the natural mass distribution on F , so that each interval I of Ek has
µ(I) = 2−k . For each distinct x, y ∈ F there is an integer k ≥ 1 such that
x and y are in the same interval of Ek−1 but with x ∈ I and y ∈ I ′ with
I and I ′ distinct intervals of Ek . We decompose the energy integral into a
sum of pairs of intervals of this type. Thus for s > 0

∫∫
dµ(x)dµ(y)

|x − y|s ≤
∞∑

k=1

∑
I �=I ′;I,I ′∈Ek

∫
x∈I

∫
y∈I ′

dµ(x)dµ(y)

|x − y|s

≤
∞∑

k=1

2k 2−k2−k

3−ks

=
∞∑

k=1

(
3s

2

)k

.

This series converges if and only if s < log 2/ log 3 (in which case the
energy is at most (3s/2)/(1 − (3s/2)), so by Theorem 4.13, dimHF ≥
log 2/ log 3.

Chapter 5

5.1 Let F be a Borel subset of R2 with 0 < L2(F ) < ∞, so F is a 2-set. Assume
for the time being that F is bounded, say F ⊂ B for some disc B. Noting that
H2(A) = cL2(A) for a constant c > 0, (5.3) and Proposition 5.1(a) applied
to F and then B \ F gives

lim
r→0

L2(F ∩ B(x, r))

L2(B(x, r))
= 0

for almost all x /∈ F and

lim
r→0

L2(F ∩ B(x, r))

L2(B(x, r))
= lim

r→0

L2(B ∩ B(x, r))

L2(B(x, r))

− lim
r→0

L2((B \ F) ∩ B(x, r))

L2(B(x, r))
= 1 − 0

for almost all x /∈ B \ F so for almost all x ∈ F . This is the Lebesgue density
theorem for bounded F . For unbounded F , we have the result for F ∩ B for
every disc B, so since the Lebesgue density at x depends only on F in an
neighbourhood of x, the result follows for all Borel sets F .
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5.2 Let x ∈ R with f ′(x) = c. Given 0 < ε < c, there exists δ > 0 such that if
|y − x| < δ, then c − ε < f ′(y) < c + ε, by continuity of f ′. By the mean
value theorem

|f (y) − f (z)| = |f ′(w)||y − z|

for y, z ∈ B(x, δ), for some w ∈ B(x, δ), so f is bi-Lipschitz on B(x, δ)

with
(c − ε)|z − y| ≤ |f (y) − f (z)| ≤ (c + ε)|y − z|.

Thus if 0 < r < δ, we have

B(f (x), (c − ε)r) ⊂ f (B(x, r)) ⊂ B(f (x), (c + ε)r)

and by (2.9)

(c − ε)sHs(F ∩ B(x, r)) ≤ Hs(f (F ∩ B(x, r)))

≤ (c + ε)sHs(F ∩ B(x, r)).

Hence

Hs(f (F ) ∩ B(f (x), (c − ε)r))

(c + ε)s
≤ Hs(F ∩ B(x, r))

≤ Hs(f (F ) ∩ B(f (x), (c + ε)r))

(c − ε)s

so

(
c − ε

c + ε

)s Hs(f (F ) ∩ B(f (x), (c − ε)r))

(2(c − ε)r)s
≤ Hs(F ∩ B(x, r))

(2r)s

≤
(

c + ε

c − ε

)−s Hs(f (F ) ∩ B(f (x), (c + ε)r))

(2(c + ε)r)s
.

Taking limits as r ↘ 0 gives

(
c − ε

c + ε

)s

Ds(f (F ), f (x)) ≤ Ds(F, x) ≤
(

c + ε

c − ε

)s

Ds(f (F ), f (x)).

This is true for all ε > 0, so Ds(f (F ), f (x)) = Ds(F, x). Similarly, taking
upper limits gives D

s
(f (F ), f (x)) = D

s
(F, x).
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5.3 Let F be the middle third Cantor set. If x /∈ F then, since F is closed,
F ∩ B(x, r) = Ø for sufficiently small r , so Ds(F, x) = D

s
(F, x) = 0.

Let x ∈ F . For k = 1, 2, . . . , the (interior of the) interval B(x, 3−k) inter-
sects just one kth level interval in Ek in the usual construction of the Cantor
set, see figure 0.1. Thus, with s = log 2/ log 3, Hs(F ∩ B(x, 3−k)) ≤ 2−k

(the Hs-measure of a kth level interval), so

Hs(F ∩ B(x, 3−k))

(2.3−k)s
≤ 2−k

2s2−k
= 2−s .

It follows that

Ds(F, x) = limr→0
Hs(F ∩ B(x, r))

(2r)s

≤ limk→∞
Hs(F ∩ B(x, 3−k))

(2.3−k)s
= 2−s .

Since Ds(F, x) < 1 for all x, F is irregular.

5.4 Let F be the dust of figure 5.4, so at the kth stage of construction, Ek consists
of 4k squares of sides 4−k each with H1-measure 4−k . For k = 1, 2, . . . ,

and x ∈ F , we have H1(F ∩ B(x, 4−k)) ≤ 4−k , since B(x, 4−k) intersects
just one square of Ek . Thus

D1(F, x) = limr→0
H1(F ∩ B(x, r))

2r
≤ limk→∞

H1(F ∩ B(x, 4−k))

2.4−k

≤ lim
k→∞

4−k

2.4−k
≤ 1

2
.

In particular, F is irregular.

Similarly, if x ∈ F then H1(F ∩ B(x, 4−k
√

2)) ≥ 4−k , since B(x, 4−k
√

2)

contains a complete square of Ek . Thus

D
1
(F, x) = limr→0

H1(F ∩ B(x, r))

2r
≥ limk→∞

H1(F ∩ B(x, 4−k
√

2))

2.4−k
√

2

≥ lim
k→∞

4−k

2.4−k
√

2
≥ 1

2
√

2
.

In fact for almost all x ∈ F , the point x lies arbitrarily close to the centre of
squares in Ek for large k, so that, given ε > 0, B(x, 4−k( 1

2

√
2 + ε)) contains
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a complete square of Ek for infinitely many k. Proceeding just as above gives
that

D
1
(F, x) ≥ lim

k→∞
4−k

4−k(
√

2 + 2ε)
= 1√

2 + 2ε
.

Thus for H1-almost all x ∈ F , D
1
(F, x) ≥ 1/

√
2.

5.5 Let F be an irregular s-set with 0 < s < 1. Suppose for some 0 < d < 1
there is a subset F1 ⊂ F with Hs(F1) > 0 such that Ds(F, x) > d for all
x ∈ F1. By Proposition 5.1(b) D

s
(F, x) ≤ 1 for almost all x ∈ F . Given

ε > 0, Egoroff’s theorem guarantees that there exists r0 > 0 and a Borel set
E ⊂ F1 ⊂ F with Hs(E) > 0 and such that

d(1 − ε) ≤ (2r)−sHs(F ∩ B(x, r)) ≤ (1 + ε)

for all x ∈ E and r < r0.

Let y be a cluster point of E. Let η be a number with 0 < η < 1 and let
Ar,η be the annulus B(y, r(1 + η)) \ B(y, r(1 − η)). Then for r < 1

2r0,

Hs(F ∩ Ar,η)

(2r)s
= Hs(F ∩ B(y, r(1 + η)))

(2r)s
− Hs(F ∩ B(y, r(1 − η)))

(2r)s

≤ (1 + ε)(1 + η)s − (1 − ε)d(1 − η)s .

For a sequence of r ↘ 0 we may find x ∈ E with |x − y| = r .
For all ε > 0, B(x, rη(1 − ε)) ⊂ Ar,η, so since d(1 − ε) ≤ (2rη(1 − ε))−s

Hs(B(x, rη(1 − ε))), we get

d(1 − ε)1+sηs ≤ (1 + ε)(1 + η)s − (1 − ε)d(1 − η)s.

Since this is true for all ε > 0 and 0 < η < 1, we conclude that

d ≤ (1 + η)s

ηs + (1 − η)s

for all 0 < η < 1. We minimize this expression using elementary calculus.
Differentiating, and equating to 0 gives

0 = s(ηs + (1 − η)s)(1 + η)s−1 − s(1 + η)s(ηs−1 − (1 − η)s−1)

which simplifies to
ηs−1 = 2(1 − η)s−1
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so η = 21/(s−1)/(1 + 21/(s−1)) gives the minimum. Thus

d ≤ (1 + η)s

ηs + (1 − η)s
= (1 + 2.21/(s−1))s

2s/(s−1) + 1
= (1 + 2s/(s−1))s−1.

We conclude that D(F, x) ≤ (1 + 2s/(s−1))s−1 for almost all x ∈ F .

5.6 The simplest example is F = [0, 1] \ Q, which has L1(F ) = 1 (since Q is
countable) and is totally disconnected, since there is a rational between any
two distinct real numbers.

A more interesting example is a ‘fat fractal’ which may be obtained by a
Cantor set construction, with E0 = [0, 1] and with Ek obtained from Ek−1 by
removing the middle proportion 2−k from each of the 2k−1 intervals of Ek−1.
As usual, F = ∩∞

k=0Ek . Clearly F is totally disconnected. Calculating the
lengths of the intervals, and noting that (1 − x) ≥ exp(−2x) for 0 < x < 1

2 ,

L1(Ek) = 2k × 1

2k

(
1 − 1

2

)(
1 − 1

22

)
. . .

(
1 − 1

2k

)

≥ exp(−1) exp(−1/2) · · · exp(−1/2k−1) ≥ exp(−2)

for all k. Thus L1(F ) ≥ exp(−2) > 0.

5.7 Since Hs(E ∩ B(x, r)) ≤ Hs(F ∩ B(x, r)) for all x and r , we have
D

s
(E, x) ≤ D

s
(F, x) for all x. For Hs-almost all x ∈ E \ F , we have

D
s
(F, x) = 0 by Proposition 5.1(a), and so D

s
(E, x) = 0. On the other

hand, for almost all x ∈ E \ F we have 0 < D
s
(E \ F, x) ≤ D

s
(E, x), by

Proposition 5.1(b). We conclude Hs(E \ F) = 0.

We cannot conclude E ⊂ F : for a counter example, take F to be an s-set
where s > 0 and E = F ∪ {x} for some x /∈ F .

5.8 The simplest approach is to use Theorem 5.9. If the Fk are all regular, each
Fk may be covered by a countable union of rectifiable curves except for a
set of H1-measure 0. Thus ∪∞

k=1Fk may be covered by a countable union
of rectifiable curves, except for a countable union of sets of H1-measure 0,
a set which has H1-measure 0. (Recall that a countable union of countable
sets is countable.) Since ∪∞

k=1Fk in a 1-set, it fulfils the criteria of Theorem
5.9 to be regular.

Now suppose that the Fk are all irregular. If C is a rectifiable curve, H1(C ∩
Fk) = 0, so

H1(C ∩ ∪∞
k=1Fk) = H1(∪∞

k=1(C ∩ Fk)) ≤ 
∞
k=1H1(C ∩ Fk) = 0.

By Theorem 5.9, ∪∞
k=1Fk is irregular.
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5.9 Suppose H1(E ∩ F) > 0, so E ∩ F is a 1-set. The E ∩ F is a subset of a
regular 1-set E so is regular, and also a subset of an irregular 1-set F so is
irregular, by the remark after (5.4). Thus E ∩ F is both regular and irregular,
so almost all points x ∈ E ∩ F are both regular and irregular. This is absurd,
so we conclude that H1(E ∩ F) = 0.

Chapter 6

6.1 (a) If 1
2 < λ < 1 then

1 >
2 log 2

log(2/(1 − λ))
= dimHprojθE

for almost all θ , by Theorem 6.1. If 0 < λ ≤ 1
2 then dimHE ≥ 1, so dimH

projθE = 1 for almost all θ , by Theorem 6.1.

(b) We have proj0E = projπ/2E = F , so

dimHproj0E = dimHprojπ/2E = dimHF = log 2

log(2/(1 − λ))
.

6.2 With C as the unit circle in the complex plane, f : [0, 1] → C given
by f (φ) = e2πiφ is Lipschitz, since |f (φ1) − f (φ2)| = |e2πiφ1 − e2πiφ2 | ≤
2π |φ1 − φ2|. Thus dimHE = dimHf (F ) ≤ dimHF = log 2/ log 3, so dimH
projθE ≤ log 2/ log 3 for all θ .

On the other hand, given θ , we may choose a basic interval I of the Cantor
set such that the arc A = {f (φ) : φ ∈ I } has all its tangents making angles
at most ψ < 1

2π with the line Lθ in direction θ . Then projθ : A → Lθ

is bi-Lipschitz, so dimHprojθE ≥ dimHprojθ (E ∩ A) = log 2/ log 3. Hence
dimHprojθE = log 2/ log 3 for all θ .

6.3 Let E be the middle λ Cantor set, with λ chosen so that s = log 2/ log(2/(1 −
λ)) = dimHE. Then E is an s-set. Let F = {(x, y) : (x = 0 and y ∈ E) or
(x ∈ E and y = 0)}. Then for all θ �= 0, π

2 , the projection projθF is the
union of two similar copies of E, so is an s-set. Also proj0E and proj π

2
E

are congruent to E and so are s-sets.

6.4 We have by Theorem 6.1 that, for almost all θ ,

dimHprojθ (E × F) = min{1, dimH(E × F)} ≥ min{1, dimHE + dimHF }
> max{dimHE, dimHF },

since 0 < dimHE, dimHF < 1. But dimHproj0(E × F) = dimHE and dimH
proj π

2
(E × F) = dimHF , so the projections onto the coordinate axes have

exceptionally small dimensions in the sense of Theorem 6.1.



Solutions to Exercises 37

6.5 Assume without loss of generality that θ = 0 and that F is bounded, say
F ⊂ [a, b] × [a, b] (transforming by a congruence if necessary). Then F ⊂
(proj0F) × [a, b], so

dimHF ≤ dimH((proj0F) × [a, b]) = dimH(proj0F) + 1

by a direct covering argument, or see Corollary 7.4. This formula extends
to unbounded sets F in the usual way, expressing F as a countable union
of bounded sets F =⋃∞

j=1(F ∩ ([−j, j ] × [−j, j ])) and using countable
stability of Hausdorff dimension dimHF = sup1≤j<∞ dimH(F ∩ ([−j, j ] ×
[−j, j ])).

6.6 Let x �= y ∈ F ⊂ R2 where F is an irregular 1-set. By Theorem 6.4 we
may choose a direction θ such that length(projθF ) = H1(projθF ) = 0 and
such that projθ x �= projθ y. Thus we may choose z ∈ Lθ , the line through
the origin in direction θ , with z between projθx and projθy such that z /∈
projθF . Thus the line L through z and perpendicular to Lθ does not intersect
F , so if U and V are the two open half-planes bounded by L, we have
F = (F ∩ U) ∪ (F ∩ V ) with x ∈ F ∩ U and y ∈ F ∩ V . Thus x and y

are in different connected components of F . This is true for all x �= y, so
F is totally disconnected.

6.7 Let x �= y ∈ F ⊂ R2 and let θ be a direction other than that of the segment
[x, y], so projθx �= projθy. If L1(projθF ) = 0, then we may find z ∈ Lθ ,
the line through the origin in direction θ , with z between projθx and projθy
such that z /∈ projθF . Thus the line L through z and perpendicular to Lθ

does not intersect F , so if U and V are the two open half-planes bounded
by L, we have F = (F ∩ U) ∪ (F ∩ V ) with x ∈ F ∩ U and y ∈ F ∩ V .
Thus x and y are in different connected components of F , contradicting
that F is connected. We conclude that L1(projθF ) > 0 for all directions
except the direction of the segment [x, y].

In fact, we may conclude that if F is connected and contains more than
one point then L1(projθF ) > 0, and indeed that projθF is an interval of
positive length, for all θ unless F is a subset of a straight line, in which
case this is true for all but one direction θ .

6.8 Write Lθ for the line through the origin in direction θ . Then projθ (x, y)

is the point on Lθ at distance x cos θ + y sin θ = (x + yλ) cos θ from the
origin, where λ = tan θ . Thus for all θ such that cos θ �= 0, the set E + λF

is similar to projθ (E × F), so for almost all θ , that is for almost all λ,

dimH(E + λF) = dimHprojθ (E × F) = min{1, dimHE × F }

by Theorem 6.1.
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6.9 Let F =⋃∞
i=1 Fi be a countable union of the irregular 1-sets Fi . By The-

orem 6.4, L1(projθFi) = 0 for almost all θ , say for all θ /∈ �i , where
L1(�i) = 0. Thus

L1(projθF ) = L1

(
projθ

∞⋃
i=1

Fi

)
≤

∞∑
i=1

L1(projθFi) = 0

for all θ /∈⋃∞
i=1 �i , where L1

(⋃∞
i=1 �i

) ≤∑∞
i=1 L1(�i) = 0. Thus

L1(projθF ) = 0 for almost all θ .

6.10 Suppose H1(C ∩ (E × F)) > 0 for some rectifiable curve C. Then C ∩
(E × F) is a regular 1-set by Proposition 5.6, so L1(projθ (C ∩ (E × F))) >

0 for all except at most one direction θ . Thus either 0 < L1(proj0(C ∩ (E ×
F))) ≤ L1(proj0(E × F)) ≤ L1(E) or 0 < L1(projπ/2(C ∩ (E × F))) ≤
L1(projπ/2(E × F)) = L1(F ), a contradiction.

6.11 This result of this exercise may be obtained by transforming Projection
theorem 6.1 under a projective transformation.

In the plane, let C be the ‘line at infinity’, that is the set of directions
of lines in the plane. We claim that, given a line L in R2, there exists a
natural bijection ψ : R2 ∪ C → R2 ∪ C such that ψ(L) = C which has nice
geometrical properties regarding straight lines, projections and dimensions.

Regard R2 as the ‘x-y’coordinate plane in R3, let C be its line at infinity,
and let L be a given line in R2. Let (a, b, 0) be some point of L and let p

be the point (a, b, 1). Let P be a plane which is perpendicular to R2 and
parallel to L but not containing L, and let C′ be the line at infinity of P .
Define ψ : R2 ∪ C → P ∪ C′ by taking ψ(x) to be the point of intersection
of P with the line through x and p. If x ∈ L then we take this to be the
point of the ‘line at infinity’ C′ corresponding to the direction of the line
through x and p. The map ψ extends to C by mapping a direction in C onto
the point of intersection of P with the line through p in that direction. By
identifying P with R2 we get the desired mapping ψ : R2 ∪ C → R2 ∪ C.

It is immediate that (i) ψ maps the set of straight lines (including C) bijec-
tively onto the set of straight lines, (ii) ψ(L) = C. For our purposes we
note the following particular properties which follow easily form the con-
struction: (iii) ψ is bi-Lipschitz on every set B such that B and ψ(B) are
bounded subsets of R2, so in particular F and ψ(F) have equal Haus-
dorff dimension (provided they both avoid L and C), (iv) for E ⊂ L we
have L1(ψ(E)) > 0 (thinking of ψ(E) as a set of directions) if and only if
L1(E) > 0, (v) for each x ∈ L, a set of lines {Lθ : θ ∈ �} through x has
positive angular measure, i.e. L1(�) > 0, if and only if the set of paral-
lel image lines {ψ(Lθ ) : θ ∈ �} in direction ψ(x) have displacements of
positive L1-measure.
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We may now deduce the required results by transforming Projection the-
orem 6.1 under ψ and using the above properties. Let L be a straight
line and let ψ be as above, so that ψ(x) ∈ C if x ∈ L. Let F be a Borel
subset of R2\L with dimHF > 1. Then dimH(ψ(F )) > 1. By Projection
Theorem 6.1(b), for almost all directions ψ the lines in direction ψ(x) that
intersect ψ(F) have displacements of positive L1-measure. Transforming
back using (iv) and (v) above, this becomes that for almost all x ∈ L,
L1{ directions of lines through x that intersect F } > 0.

We may show in a similar manner that if dimHF = s ≤ 1 then for almost
all x ∈ L, dimHprojxF = s ; here we replace (v) above by: (vi) for each
x ∈ L, a set of lines {Lθ : θ ∈ �} through x has angular dimension s, i.e.
dimH(�) = s, if and only if the set of parallel image lines {ψ(Lθ ) : θ ∈ �}
in direction ψ(x) have displacements of Hausdorff dimension s.

Chapter 7

7.1 We have that dimH[0, 1] = dimB[0, 1] = 1, so by Corollary 7.4

dimH(F × [0, 1]) = dimHF + dimH[0, 1] = dimHF + 1.

7.2 From Example 4.5 or Exercise 2.14, dimHFλ = dimBFλ = log 2/ log(2/

(1 − λ)), so by Formula 7.5 and Corollary 7.4

log 2

log(2/(1 − λ))
+ log 2

log(2/(1 − µ))
= dimBFλ + dimBFµ ≥ dimB(Fλ × Fµ)

≥ dimH(Fλ × Fµ) = dimHFλ + dimHFµ = log 2

log(2/(1 − λ))

+ log 2

log(2/(1 − µ))
.

Hence

dimH(Fλ × Fµ) = dimB(Fλ × Fµ) = 2 log 2

log(2/(1 − λ))
.

7.3 This is a slight variant on Example 7.7. First assume that F ⊂ [a, b]
for some 0 < a < b < ∞. The mapping f : [a, b] × R → R2 given by
f (x, y) = (x cos y, x sin y) is Lipschitz, with F ′ = f (F × [0, 2π]). Thus

dimHF ′ = dimHf (F × [0, 2π]) ≤ dimH(F × [0, 2π])

= dimHF + dimH[0, 2π] = dimHF + 1

by Corollary 2.4(a) and Example 7.6.
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On the other hand, for 0 < a < b < ∞, the restriction f : [a, b] × [0, π] →
R2 is a bi-Lipschitz function, with F ′ ⊃ f (F × [0, π]). Thus

dimHF ′ ≥ dimHf (F × [0, π]) ≥ dimH(F × [0, π])

= dimHF + dimH[0, π] = dimHF + 1

by Corollary 2.4(b) and Example 7.6. We conclude that dimHF ′ =
dimHF + 1.

Finally, for F ⊂ [0, ∞], we have, by the above, that dimHF ′ ∩ ((B(0, n) \
Bo(0, 1/n)) = dimH(F ∩ [1/n, n]) + 1 for each integer n. Noting that
F\{0} =⋃∞

n=2(F ∩ [1/n, n]) and using countable stability of Hausdorff
dimension, see Section 2.2, we get dimH(F ′ \ {0}) = dimH(F \ {0}) + 1,
so adding in the origin if necessary gives dimHF ′ = dimHF + 1.

Note further, that by using the Lipschitz mapping properties of Hausdorff
measures (2.9) in a similar way, if F ⊂ [a, b] for some 0 < a < b < ∞
then 0 < Hs(F ′) < ∞, where s = dimHF + 1.

7.4 Let E be any Borel subset of [0, 1] such that dimHE = 1 and length(E) = 0.
(For example, we might take E =⋃∞

k=1 Ek where Ek are Borel sets with
dimHEk ↗ 1, see Exercise 4.9.) Setting F = E × E ⊂ R2, we get, using
Product Formula 7.2, that 2 ≥ dimHF = dimH(E × E) ≥ 2dimHE = 2, so
dimHF = 2. Moreover, the projection of F onto each of the coordinate axes
is just E, so these projections have zero length.

If F0 is a 1-set with F0 ⊂ F , then the projection of F0 onto each coordinate
axis is a subset of E, and so has length 0. Thus F0 is a 1-set with projections
of zero length in two directions, so is irregular by Corollary 6.6.

If C is a rectifiable curve, it follows that C ∩ F is both irregular and regular,
see after Proposition 5.1, so H1(C ∩ F) = 0, that is C ∩ F has zero length.

7.5 Let {Ui} and {Vj } be δ-covers of E and F by Nδ(E) and Nδ(F ) cubes
respectively. Then {Ui × Vj }i,j is a δ

√
n-cover of E × F . hence

Nδ
√

n(E × F) ≤ Nδ(E)Nδ(F ),

so
log Nδ

√
n(E × F)

− log δ
√

n
≤ log Nδ(E)

− log δ − log
√

n
+ log Nδ(F )

− log δ − log
√

n
.

Taking upper limits we get

dimB(E × F) ≤ limδ→0
log Nδ

√
n(E × F)

− log δ
√

n

≤ limδ→0
log Nδ(E)

− log δ − log
√

n
+ limδ→0

log Nδ(F )

− log δ − log
√

n
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≤ limδ→0
log Nδ(E)

− log δ
+ limδ→0

log Nδ(F )

− log δ

= dimBE + dimBF.

7.6 Note that (x, y) �→ (x + y)/
√

2 is projection onto the line ‘y = x’ and
(x, y) �→ (x − y)/

√
2 is projection onto the line ‘y = −x’. Thus, with F

the middle third Cantor set, E = {(x, y) ∈ R2 : x + y ∈ F and x − y ∈ F }
is just F × F scaled down by a factor of 1/

√
2 and rotated by −π/4 about

the origin. In particular, E is similar to F × F . By Example 7.6 and For-
mula 7.5, dimH(F × F) = dimB(F × F) = 2 log 2/ log 3, so as the dimen-
sions are preserved under similarity transformations, dimHE = dimBE =
2 log 2/ log 3.

7.7 Recall that (x, y) �→ (x − y)/
√

2 is projection onto the line L given by
‘y = −x’. Hence the difference set D = {x − y : x, y ∈ F } is similar to
projL(F × F), so

dimHD = dimHprojL(F × F) ≤ dimH(F × F) = 2dimHF,

by (6.1) and Corollary 7.4. Since D is a subset of a line, dimHD ≤ min{1, 2
dimHF }.

7.8 With F the middle third Cantor set, the set E = {(x, y) : y − x2 ∈ F } is the
union of the parabolae {y = x2 + a : a ∈ F }, that is a stack of homothetic
(i.e. translates of each other) parabolae, that intersect the y-axis in the points
of F .

Locally, E is the product of a line segment and the Cantor set, so we
would expect E to have dimension 1 + log 2/ log 3. More formally, defining
φ(x, y) = (x, y + x2), it is easy to see that, for each k, the mapping φ :
[−k, k] × F → E ∩ ([−k, k] × R) is a bi-Lipschitz bijection, so

dimH(E ∩ ([−k, k] × R)) = dimH([−k, k] × F) = 1 + log 2/ log 3.

Since E = ∪∞
k=1E ∩ ([−k, k] × R), we conclude that dimHE = log 2/

log 3 + 1.

Technically, the box dimension of E is not defined since E is unbounded.
Any non-trivial bounded portion has box dimension log 2/ log 3 + 1.

7.9 Write Lx for the line through (x, 0) parallel to the y-axis, and let Es = {x ∈
R : dimH(F ∩ Lx) ≥ s}. By Corollary 7.12, dimHF ≥ s + dimHEs for all
0 ≤ s ≤ 1, so dimHF ≥ sup0≤s≤1{s + dimHEs}.

7.10 Writing Ek for the kth stage of the iterative construction of F in the usual
way, we note that Ek consists of 12k rectangles of size 3−k × 5−k . Each of
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these rectangles may be covered by at most (5/3)k + 1 ≤ 2(5/3)k squares
of side 5−k by dividing the rectangles using a series of vertical cuts. Thus
Ek may be covered by 12k × 2 × (5/3)k = 2 × 20k squares of side 5−k

i.e. of diameter 5−k
√

2. In the usual way (see Theorem 4.1) this gives that
dimHF ≤ log 20/ log 5 = (log 5 + log 4)/ log 5 = 1 + log 4/ log 5.

For the lower bound, let Lx be the line through (x, 0) parallel to the y-
axis. Then, except for x of the form j3−k where j and k are integers,
we have that Ek ∩ Lx consists of 4k intervals of length 5−k . A standard
application of the mass distribution principle (considering a mass such
that each of these intervals has mass 4−k) gives that dimH(F ∩ Lx) ≥
log 4/ log 5. By Corollary 7.12 dimHF ≥ 1 + log 4/ log 5, so dimHF = 1 +
log 4/ log 5.

7.11 Writing Ek for the kth stage of the iterative construction of F in the usual
way, we note that Ek consists of 8k rectangles of size 3−k × 5−k . For a
given positive integer k, let q be the integer such that 5−k−1 < 3−q ≤ 5−k .
Then dividing the rectangles of Ek horizontally into nearly square rectan-
gles of size 3−q × 5−k and selecting those above the set Ck , the kth stage
of the usual middle third Cantor set construction on the x-axis, we get that
F may be covered by 2q4k = 3q log 2/ log 34k ≤ 5(k+1) log 2/ log 34k rectangles
of size 3−q × 5−k , each contained in a square of diameter 5−k

√
2. In the

usual way (see theorem 4.1) this gives that dimHF ≤ ((log 2/ log 3) log 5 +
log 4)/ log 5 = log 2/ log 3 + log 4/ log 5.

The lower bound is similar to Exercise 7.10. Let Lx be the line through
(x, 0) parallel to the y-axis. For all x ∈ C where C is the middle third
Cantor set, except those x of the form j3−k where j and k are integers,
we have that Ek ∩ Lx consists of 4k intervals of length 5−k . The mass
distribution principle (considering a mass such that each of these intervals
has mass 4−k) gives that dimH(F ∩ Lx) ≥ log 4/ log 5. By Corollary 7.12
dimHF ≥ dimHC + log 4/ log 5 = log 2/ log 3 + log 4/ log 5, so dimHF =
log 2/ log 3 + log 4/ log 5.

Chapter 8

8.1 Let E and F be line segments of lengths L(E) and L(F ) making an angle
θ �= 0 with each other. Then E and F + x intersect if and only if x lies in
a parallelogram that is a translate of that formed by the vectors along E

and F . Thus∫
#(E ∩ (F + x))dx = area of parallelogram = L(E)L(F )| sin θ |.
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Now letting the direction of F vary before translating,

∫
#(E ∩ σ(F ))dσ = L(E)L(F )

∫ 2π

0
| sin θ |dθ = 4L(E)L(F ). (*)

Now let E =⋃m
i=1 Ei and F =⋃n

j=1 Fj be polygonal curves with Ei and
Fj line segments of lengths L(Ei) and L(Fj ). Then by (∗)

∫
#(E ∩ σ(F ))dσ =

m∑
i=1

n∑
j=1

∫
#(Ei ∩ σ(Fj ))dσ (1)

=
m∑

i=1

n∑
j=1

4L(Ei)L(Fj ) = 4L(E)L(F ), (**)

where L(E) and L(F ) are the total lengths of E and F .

We proceed from polygonal curves to rectifiable curves by approximation.
Let E and F be rectifiable curves, and let En and Fn be sequences of
polygonal curves giving closer and closer approximations to E and F , such
that each En is a refinement of En−1 (i.e. the polygonal curve En is obtained
from En−1 by adding further vertices) and such that each Fn is a refinement
of Fn−1, and such that limn→∞ L(En) = L(E) and limn→∞ L(Fn) = L(F ).
From (∗∗) ∫

#(En ∩ σ(Fn))dσ = 4L(En)L(Fn).

We now take the limit as n → ∞. Provided that
∫

#(En ∩ σ(Fn))dσ →∫
#(E ∩ σ(F ))dσ we get that∫

#(E ∩ σ(F ))dσ = 4L(E)L(F ). (*)

for rectifiable E and F . For most specific curves E and F , this will fol-
low from the bounded convergence theorem or the monotone convergence
theorem. Justification of this step is more involved for general rectifiable
curves, see Santalo (1976).

8.2 Let let L be a unit segment in the plane oriented perpendicular to direction
θ . Assume that C contains no line segment parallel to L (this can only
happen for a set of directions of L1-measure 0), and let C+ and C− be the
‘upper’ and ‘lower’ parts of the curve C with respect to the direction of L.
Then (L + x) ∩ C+ is a single point if x lies in a region congruent to that
swept out by translating C+ unit distance in the direction of L, otherwise
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(L + x) ∩ C+ = Ø. Thus∫
#(C+ ∩ (L + x))dx =

∫
#(C− ∩ (L + x))dx

= L1(projθC) × 1

so ∫
#(C ∩ (L + x))dx = 2L1(projθC).

Integrating with respect to θ for 0 ≤ θ < 2π and using Exercise 8.1 gives

4L1(C) =
∫

#(C ∩ σ(F ))dσ =
∫ 2π

0
2L1(projθC)dθ

giving the required formula.

8.3 We recall that, with E the product of two middle third Cantor sets, dimHE =
2 log 2/ log 3 = log 4/ log 3.

(i) With F a circle dimHF = dimBF = 1. By Theorem 8.1 and Corol-
lary 7.4

dimH(E ∩ (F + x)) ≤ max{0, dimH(E × F) − 2}
= max{0, dimHE + dimHF − 2}
= log 4/ log 3 + 1 − 2 = log 4/ log 3 − 1

for almost all x ∈ R2, and thus

dimH(E ∩ σ(F )) ≤ log 4/ log 3 − 1

for almost all congruence transformations σ .

By Theorem 8.2 (b)

dimH(E ∩ σ(F )) ≥ dimHE + dimHF − 2 = log 4/ log 3 + 1 − 2

= log 4/ log 3 − 1

for a set of congruence transformations of positive measure.

(ii) With F the von Koch curve, dimHF = dimBF = log 4/ log 3. By The-
orem 8.1 and Corollary 7.4

dimH(E ∩ (F + x)) ≤ max{0, dimH(E × F) − 2}

= max{0, dimHE + dimHF − 2} = 2 log 4/ log 3 − 2
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for almost all x ∈ R2, and thus

dimH(E ∩ σ(F )) ≤ 2 log 4/ log 3 − 2

for almost all congruence transformations σ .

By Theorem 8.2 (a)

dimH(E ∩ σ(F )) ≥ dimHE + dimHF − 2

= log 4/ log 3 + log 4/ log 3 − 2 = 2 log 4/ log 3 − 2

for a set of similarity transformations of positive measure. Note that we
cannot apply Theorem 8.2 (c) since dimHE, dimHF ≤ 3/2.

(iii) With F the product of two middle third Cantor sets, dimHF = dimBF =
log 4/ log 3. By Theorem 8.1 and Corollary 7.4

dimH(E ∩ (F + x)) ≤ max{0, dimH(E × F) − 2}

= max{0, dimHE + dimHF − 2} = 2 log 4/ log 3 − 2

for almost all x ∈ R2, and thus

dimH(E ∩ σ(F )) ≤ 2 log 4/ log 3 − 2

for almost all congruence transformations σ .

By Theorem 8.2 (a)

dimH(E ∩ σ(F )) ≥ dimHE + dimHF − 2 = 2 log 4/ log 3 − 2

for a set of similarity transformations of positive measure. Again, we cannot
apply Theorem 8.2 (c) since dimHE, dimHF ≤ 3/2.

8.4 As in Theorem 8.1, we prove this when n = 1. Let Lc be the line x = y +
c. If dimH(E × F) < 1, the projection of E × F onto the line x + y = 0
has zero length by (6.1), in other words, (E × F) ∩ Lc = Ø for almost
all c ∈ R. But (E × F) ∩ Lc is similar to E ∩ (F + c) (since (x, x − c) ∈
(E × F) ∩ Lc if and only if x ∈ E ∩ (F + c)). Thus E ∩ (F + c) = Ø for
almost all c ∈ R.

8.5 Let E be the set of points (x, y) in the unit square A such that both
coordinates x and y are rational. Then dimBE = dimBE = dimBA = 2,
by Proposition 3.4. Let F be a line segment. Since E is a countable set
(or since its projection in every direction has length 0), E ∩ σ(F ) = Ø so
that dimB(E ∩ σ(F )) = 0 for almost all similarities σ . However, dimBE +
dimBF − 2 = 2 + 1 − 2 = 1, so (8.5) fails for almost all similarities σ .
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8.6 Let C be a middle λ Cantor set with λ chosen so that dimHC = s − 1 (see
after Example 4.5) and transformed by a similarity so that the end points are
1
2 and 1. Let F be the ‘target’ given in polar coordinates by F = {(r, θ) :
r ∈ C, 0 ≤ θ < 2π}. By Exercise 7.3, dimHF = 1 + dimHC = s, and by
the note at the end of the solution of Exercise 7.3, 0 < Hs(F ) < ∞, so F

is an s-set.

It is easy to see that any line segment E that intersects the interior of the
unit disc cuts a set of the rings of the target F corresponding to a similar
subset of C, that is E ∩ F contains a subset that is bi-Lipschitz equivalent
to C and so has positive s-dimensional Hausdorff measure. On the other
hand, provided that E is not tangential to one of the rings of F , E ∩ F

is contained in a finite union of Lipschitz images of C, and so E ∩ F has
finite s-dimensional Hausdorff measure and so is an s-set.

8.7 Writing Lk for the line segment {(x, k−1/2) : 0 ≤ x ≤ k−1/2}, we see that
E = {(0, 0)}⋃∞

k=1 Lk . Given small enough δ, let k be the integer such that

1
2 (k + 1)−3/2 ≤ k−1/2 − (k + 1)−1/2 ≤ δ < (k − 1)−1/2 − k−1/2 (*)

where the left hand inequality follows using the mean value theorem. Then
any set of diameter δ or less can intersect at most one of the segments
L1, . . ., Lk , and the segment Lj requires at least j−1/2/δ sets of diameter
δ in any covering. Thus, using an ‘integral test’ estimate for the sum,

Nδ(E) ≥
k∑

j=1

j−1/2

δ
≥ 1

δ

∫ k

0
x−1/2dx = 2k1/2

δ
≥ 2δ−1cδ−1/3 ≥ 2cδ−4/3,

using (∗), where c is independent of δ. It follows immediately that

dimBE ≥ dimBE = limδ→0
log Nδ(E)

− log δ
≥ log 2cδ−4/3

− log δ
= 4

3
.

Every line L, that does not pass through (0, 0) and that does not contain
one of the line segments Lk , intersects E in a finite set of points, so in
particular dimB(L ∩ E) = 0.

8.8 Let 0 < s < 1, let I be an interval and let ε > 0 be given. We use a mass
distribution method to estimate Hs∞(I ∩ Ek) for large k. We may find η > 0

such that η1−s ≤
(

2
3 + ε
)

. For given k, let µ be the mass distribution on
Ek given by the restriction of Lebesgue measure to Ek . Note that if U is a
‘not too small’ subinterval of I and k is large enough then µ(U) is close
to 2

3 |U |, since two-thirds of the ternary intervals of length 3−k are present
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in Ek . In particular, provided that k is large enough, k ≥ k0, say, we can

ensure that
(

2
3 − ε
)

|I | ≤ µ(I) and

µ(U) ≤
(

2

3
+ ε

)
|U | =

(
2

3
+ ε

) |U |
|I | |I | ≤

(
2

3
+ ε

)( |U |
|I |
)s

|I |

if |U | ≥ η|I |,
and

µ(U) ≤ |U | = |U |s |U |1−s ≤ |U |s
|I |s η1−s |I | ≤

(
2

3
+ ε

)( |U |
|I |
)s

|I |

if |U | ≤ η|I |.
Thus if {Ui} is any cover of I ∩ Ek , then(

2

3
− ε

)
|I | ≤ µ(I) ≤

∑
i

µ(Ui) ≤
(

2

3
+ ε

)
|I |
∑

i |Ui |s
|I |s

giving that

∑
i

|Ui |s ≥ |I |s

(
2

3
− ε

)
(

2

3
+ ε

) ≥ |I |s(1 − 2ε).

Thus Hs∞(I ∩ Ek) ≥ |I |s(1 − 2ε).

It follows by (8.8) that limk→∞ Hs∞(I ∩ Ek) = |I |s , so F = limk→∞Ek is
in class Cs(−∞, ∞) for all 0 < s < 1.

It is immediate from Proposition 8.5 that dimHF ≥ s for all 0 < s < 1,
so dimHF = 1. Moreover, for all 0 < s < 1 and any x1, x2, . . . , we have
that F + xi ∈ Cs(−∞, ∞), by Proposition 8.8 or by repeating the argu-
ment above. Thus, by Proposition 8.6 and Corollary 8.7, ∩∞

i=1(F + xi) ∈
Cs(−∞,∞) and dimH ∩∞

i=1 (F + xi) ≥ s for all 0 < s < 1, so we conclude
that dimH ∩∞

i=1 (F + xi) = 1.

Chapter 9

9.1 The Hausdorff metric is given by

d(A, B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ},

where Aδ, Bδ are the δ-neighbourhoods of A and B.
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To show that d satisfies condition (i) for a metric, we first note that
d(A, B) ≥ 0 with d(A, A) = 0. Now suppose that d(A, B) = 0. Taking x ∈
B, we note that, for each positive integer n, we must have x ∈ B ⊂ A1/n

and so there exists xn ∈ A such that |x − xn| ≤ 1/n. Thus x ∈ A = A since
A is compact and hence closed. Thus B ⊂ A; similarly A ⊂ B so A = B

as required.

Clearly by the symmetry of the definition, d(A, B) = d(B, A), which is
condition (ii) for a metric.

To show that d satisfies condition (iii), we suppose that d(A, C) = ε1 and
d(C, B) = ε2. Then, for each δ1 > ε1 and each δ2 > ε2, we have

A ⊂ Cδ1 , C ⊂ Aδ1, C ⊂ Bδ2, B ⊂ Cδ2 .

So

A ⊂ Cδ1 ⊂ Bδ1+δ2 and B ⊂ Cδ2 ⊂ Aδ2+δ1 .

Thus d(A, B) ≤ δ1 + δ2 for all δ1, δ2 with δ1 > ε1 and δ2 > ε2, so
d(A, B) ≤ ε1 + ε2 = d(A, C) + d(C, B) as claimed.

9.2 Let c be any real number for which 0 < c < 1. Then the interval [0, 1] is
the attractor for the similarity transformations defined on R by S1(x) = cx

and S2(x) = (1 − c)x + c, since S1([0, 1]) ∪ S2([0, 1]) = [0, c] ∪ [c, 1] =
[0, 1]. Clearly S1 and S2 are both contractions, so from Theorem 9.1 [0, 1]
is the unique non-empty compact attractor for S1 and S2.

9.3 We begin by noting that the middle third Cantor set is non-empty and com-
pact. The middle third Cantor set is therefore the attractor for the following
four similarity transformations on R which map the interval E0 = [0, 1]
onto the four intervals in E2:

S1(x) = x/9, S2(x) = x/9 + 2/9, S3(x) = x/9 + 2/3, S4(x) = x/9 + 8/9.

The ratios of these similarities are all 1/9 so that equation (9.13) is
4(1/9)s = 1. Taking the log of both sides gives log 4 − s log 9 = 0 so that

s = log 4

log 9
= log 22

log 32
= 2 log 2

2 log 3
= log 2

log 3

The middle third Cantor set is also the attractor for the following three
similarity transformations on R which map the interval E0 = [0, 1] onto
the first two intervals in E2 and the second interval in E1:

S1(x) = x/9, S2(x) = x/9 + 2/9, S3(x) = x/3 + 2/3.
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The ratios of the similarities are 1/9, 1/9 and 1/3 respectively, so that equation
(9.13) is 2(1/9)s + (1/3)s = 1. Putting x = (1/3)s , we can write this as
2x2 + x = 1 or, equivalently, (2x − 1)(x + 1) = 0 which has solutions x =
1/2 and x = −1. Since x = (1/3)s > 0, it follows that (1/3)s = 1/2. Taking
logarithms of both sides gives −s log 3 = − log 2 so that s = log 2/ log 3.

9.4 Recall that the matrix which represents a rotation about the origin through

angle θ is

(
cos θ − sin θ

sin θ cos θ

)
. Note that the generator of the von Koch

curve (see figure 0.2) has vertices (0, 0),
(

1
3 , 0
)

,
(

1
2 ,

√
3

6

)
,
(

2
3 , 0
)

and (1, 0).
Regarding the similarities that maps the line segment joining (0, 0) and
(1, 0) onto the intermediate segments as a composition of a rotation by
±π/3 (if necessary), a scaling by factor of 1

3 and a translation, we see that
an IFS {S1, S2, S3, S4} that has the von Koch curve as attractor is given by

S1

(
x

y

)
= 1

3

(
x

y

)

S2

(
x

y

)
= 1

3

(
1
2 −

√
3

2√
3

2
1
2

)(
x

y

)
+
(

1
3

0

)

S3

(
x

y

)
= 1

3

(
1
2

√
3

2

−
√

3
2

1
2

)(
x

y

)
+
( 1

2√
3

6

)

S4

(
x

y

)
= 1

3

(
x

y

)
+
(

2
3

0

)
.

The open set condition holds, taking the open set V to be the interior of the

isosceles triangle with vertices (0, 0),
(

1
2 ,

√
3

6

)
and (1, 0). This open triangle

is mapped by S1, . . ., S4 to four similar open triangles at scale 1
3 with bases

on the four segments of the generator, with their union contained in V .
Theorem 9.3 immediately gives that the box and Hausdorff dimension s of
the von Koch curve is given by

∑4
i=1(1/3)s = 1, that is 4 × 3−s = 1 or

s = log 4/ log 3.

9.5 The set F in figure 0.5 is the attractor of the following five similarities on
R2 which map E0 onto the five squares in E1:

S1(x, y) = (x/4, y/4), S2(x, y) = (x/4 + 3/4, y/4),

S3(x, y) = (x/4 + 3/4, y/4 + 3/4), S4(x, y) = (x/4, y/4 + 3/4)

S5(x, y) = (x/2 + 1/4, y/2 + 1/4).
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The ratios of these similarities are 1/4, 1/4, 1/4, 1/4, 1/2 respectively.
Each of the sets in Ek is compact. Thus F is the intersection of a decreas-
ing sequence of compact sets and is hence compact. So F is the attractor
satisfying F =⋃5

i=1 Si(F ). The open set condition holds, taking V as the
interior of the initial square E0, and so it follows from Theorem 9.3 that
dimHF = dimBF = s, where s is given by 1 = 4(1/4)s + (1/2)s .

Note that this can be solved by putting x = (1/2)s to give

4x2 + x − 1 = 0

so that

x = (−1 ±
√

17)/8.

Since x = (1/2)s > 0, it follows that (1/2)s = −1/8 + √
17/8 and so

−s log 2 = log(−1/8 + √
17/8). Thus

s = − log(−1/8 + √
17/8)

log 2
= 1.357 . . . .

9.6 The set F is the attractor for the three similarities on R2:

S1(x, y) = (x/2, y/2), S2(x, y) = (x/2 + 1/2, y/2),

S3(x, y) = (y/4 + 1/2, −x/4).

These have ratios 1/2, 1/2, 1/4 respectively. The open set condition holds,
taking V to be the interior of the triangle formed by the three free ends of
the segments. From Theorem 9.3 dimHF = dimBF = s, where

1 = 2(1/2)s + (1/4)s = 2(1/2)s + (1/2)2s .

Putting x = (1/2)s , we have

x2 + 2x − 1 = 0

and so

x = −1 ±
√

2.

Since x = (1/2)s > 0, it follows that (1/2)s = −1 + √
2 and so −s log 2 =

log(−1 + √
2). Thus

s = − log(−1 + √
2)

log 2
= 1.271 . . . .
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9.7 The set F is the attractor for the following similarities on R which map
[0, 1] onto the intervals [0, 1/4] and [1/2, 1] respectively:

S1(x) = x/4 and S2(x) = x/2 + 1/2,

with ratios 1/4 and 1/2. The set F is the intersection of a decreasing
sequence of non-empty compact sets and is hence non-empty and compact.
The open set condition holds, taking V as the open interval (0, 1) and so,
by Theorem 9.3, dimHF = dimBF = s, where s is given by

1 = (1/4)s + (1/2)s = (1/2)2s + (1/2)s .

Putting x = (1/2)s , we have x2 + x − 1 = 0 and so x = (−1 ± √
5)/2.

Since x = (1/2)s > 0, it follows that (1/2)s = (−1 + √
5)/2.

and so

s =
− log

(
−1 + √

5

2

)

log 2
= 1 − log(−1 + √

5)

log 2
= 0.6942 . . . .

9.8 In each case it may be verified trivially that the stated attractor is compact
and satisfies F = S1(F ) ∪ S2(F ).

(i) The middle half Cantor set (i.e. the Cantor-type construction with the
(open) middle half of intervals removed at each stage).

(ii) The interval [0, 1].

(iii) The interval [0, 1]. (Notice that in this case the two parts S1([0, 1])
and S2([0, 1]) overlap non-trivially).

9.9 The open set condition holds for the IFS {S1, . . . , Sm}, taking V as the
open unit square, so that the Si(V ) are the interiors of the squares selected
in E1, with V ⊃⋃m

i=1 Si(V ) and the union disjoint.

Thus by Theorem 9.3, the box and Hausdorff dimension s of F is given by∑m
i=1(1/p)s = 1, that is m × p−s = 1 or s = log m/ log p.

9.10 This is similar to Example 9.8. Here S1 and S2 are contractions on the
closed set D = [0, 1] ⊂ R. We note that

S′
1(x) = 2

(2 + x)2
> 0 and S′

2(x) = −2

(2 + x)2
< 0.

Thus S1 is increasing on D and S2 is decreasing on D so that

S1(D) = [S1(0), S1(1)] = [0, 1/3] and S2(D) = [S2(1), S2(0)] = [2/3, 1].
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Since F ⊂ D, it follows that S1(F ) ⊂ [0, 1/3] and S2(F ) ⊂ [2/3, 1]. Thus
F is the disjoint union of S1(F ) and S2(F ) and so we can apply Propositions
9.6 and 9.7 to estimate dimHF . (We could use Proposition 9.6 even if the
union was not disjoint.)

For x ∈ D, i = 1, 2, we have

2

9
= 2

32
≤ |S′

i (x)| = 2

(2 + x)2
≤ 2

22
= 1

2
.

It follows from the mean-value theorem that, for x, y ∈ D, i = 1, 2,

2

9
|x − y| ≤ |Si(x) − Si(y)| ≤ 1

2
|x − y|.

By Propositions 9.6 and 9.7, t ≤ dimHF ≤ s, where

2(2/9)t = 1 = 2(1/2)s .

Clearly s = 1 and taking logs gives

t = log 1/2

log 2/9
= 0.46

to two decimal places, so 0.46 < dimHF ≤ 1.

These estimates are rather poor, and so we use the fact that F is also the
attractor of the four contractions defined by

S1 ◦ S1(x) =
x

2 + x

2 + x

2 + x

= x

4 + 3x
S1 ◦ S2(x) =

2

2 + x

2 + 2

2 + x

= 1

3 + x

S2 ◦ S1(x) = 2

2 + x

2 + x

= 4 + 2x

4 + 3x
S2 ◦ S2(x) = 2

2 + 2

2 + x

= 2 + x

3 + x
.

Thus for x ∈ D

4

49
≤ |(S1 ◦ S1)

′(x)| =
∣∣∣∣ 4

(4 + 3x)2

∣∣∣∣ ≤ 1

4

1

16
≤ |(S1 ◦ S2)

′(x)| =
∣∣∣∣ −1

(3 + x)2

∣∣∣∣ ≤ 1

9

4

49
≤ |(S2 ◦ S1)

′(x)| =
∣∣∣∣ −4

(4 + 3x)2

∣∣∣∣ ≤ 1

4

1

16
≤ |(S2 ◦ S2)

′(x)| =
∣∣∣∣ 1

(3 + x)2

∣∣∣∣ ≤ 1

9
.
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By the mean-value theorem, for each x, y ∈ D, i = 1, 2,

4

49
|x − y| ≤ |Si ◦ S1(x) − Si ◦ S1(y)| ≤ 1

4
|x − y|

and

1

16
|x − y| ≤ |Si ◦ S2(x) − Si ◦ S2(y)| ≤ 1

9
|x − y|.

Since S1(F ) and S2(F ) are disjoint, the sets S1 ◦ S1(F ), S1 ◦ S2(F ), S2 ◦
S1(F ) and S2 ◦ S2(F ) are also disjoint and so it follows from Propositions
9.6 and 9.7 that t ≤ dimHF ≤ s, where

2(4/49)t + 2(1/16)t = 1 = 2(1/4)s + 2(1/9)s .

To two decimal places, this is satisfied by s = 0.80 and t = 0.53 and so
0.52 < dimHF < 0.81.

9.11 We use the notation of Theorem 9.3. If x ∈ F then, as in (9.7), we have that
x =⋂∞

k=1 Si1 ◦ · · · ◦ Sik (E). Given 0 < r < |F |, with Q1 as in the proof
of Theorem 9.3, we have

F ∩ B(x, r) ⊂
⋃

i1,... ,ik∈Q1

V i1,... ,ik ,

so

Hs(F ∩ B(x, r)) ≤
∑
Q1

Hs(F ∩ V i1,... ,ik ) =
∑
Q1

Hs(Fi1,... ,ik )

≤
∑
Q1

(ci1 · · · cik )
s |F |s ≤ qrs |F |s

so

D
s
(F, x) = limr→0

Hs(F ∩ B(x, r))

(2r)s
≤ limr→0

qrs |F |s
(2r)s

≤ q2−s |F |s .

On the other hand, if x =⋂∞
k=1 Si1 ◦ · · · ◦ Sik (E), then choosing k such

that (mini ci)r ≤ ci1 · · · cik |F | ≤ r , we have Fi1,... ,ik ⊂ B(x, r), so that

Hs(F ∩ B(x, r)) ≥ Hs(Fi1,... ,ik ) ≥ (ci1 · · · cik )
sHs(F )

≥ (min
i

ci)
s |F |−srs ≡ brs

Thus

Ds(F, x) = limr→0
Hs(F ∩ B(x, r))

(2r)s
≥ limr→0

brs

(2r)s
≥ b2−s .
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9.12 Since F ∩ V ⊂ F we have dimH(F ∩ V ) ≤ dimHF .

Since V is an open set intersecting F , there is a bi-Lipschitz map-
ping S : F → V , so that F ∩ V contains a bi-Lipschitz image of F

and thus dimH(F ∩ V ) ≥ dimHF . (To see this, let x ∈ F ∩ V so that
x =⋂∞

k=1 Si1 ◦ · · · ◦ Sik (E), as in (9.7). Then Si1 ◦ · · · ◦ Sik (F ) ⊂ F ∩ V

if k is large enough, so we may take S = Si1 ◦ · · · ◦ Sik as the bi-Lipschitz
mapping.) Thus dimH(F ∩ V ) = dimHF . An identical argument shows that
dimB(F ∩ V ) = dimBF and dimB(F ∩ V ) = dimBF since these dimen-
sions are also preserved under bi-Lipschitz mappings.

By Corollary 3.9, dimPF = dimBF .

9.13 Note that this is a generalization of Example 7.13 and Exercises 7.10 and
7.11.

(a) The formula of Example 9.11 gives

dimHF = log


 p∑

j=1

N
log p/ log q

j


 1

log p
= log(pN log p/ log q)

log p
= 1 + log N

log q
.

To check this, write Ek for the kth stage of the iterative construction
of F in the usual way, and note that Ek consists of (pN)k rectan-
gles of size p−k × q−k . Each of these rectangles may be covered by at
most (q/p)k + 1 ≤ 2(q/p)k squares of side q−k by dividing the rect-
angles using a series of vertical cuts. Thus Ek may be covered by
(pN)k2(q/p)k = 2(Nq)k squares of side q−k i.e. of diameter q−k

√
2. In

the usual way (see Theorem 4.1) this gives that dimHF ≤ log(Nq)/ log q =
(log N + log q)/ log q = 1 + log N/ log q.

For the lower bound, let Lx be the line through (x, 0) parallel to the y-axis.
Then, except for x of the form jp−k where j and k are integers, we have
that Ek ∩ Lx consists of Nk intervals of length q−k . A standard application
of the mass distribution principle (considering a mass such that each of
these intervals has mass N−k) gives that dimH(F ∩ Lx) ≥ log N/ log q. By
Corollary 7.12 dimHF ≥ 1 + log N/ log q, so dimHF = 1 + log N/ log q.

(b) The formula of Example 9.11 gives

dimHF = log


 p∑

j=1

N
log p/ log q

j


 1

log p

= log(p1N
log p/ log q)

log p
= log p1

log p
+ log N

log q
.
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To check this, write Ek for the kth stage of the iterative construction
of F in the usual way. Note that Ek consists of (p1N)k rectangles of
size p−k × q−k . Let C be the projection of F onto the x-axis, so that
C is a self-similar set subset of the x-axis formed by p1 similarities of
ratios 1/p. Let Ck be the projection of Ek onto the x-axis, so that Ck

is the kth stage of the construction of C under the usual process. For a
given positive integer k, let s be the integer such that q−k−1 < p−s ≤ q−k .
Considering the part of F above the set Cs , we get that F may be cov-
ered by ps

1N
k = p

s log p1/ log p

1 Nk ≤ q(k+1) log p1/ log pNk rectangles of size
p−s × q−k , each contained in a square of diameter q−k

√
2. In the usual

way (see Theorem 4.1) this gives that dimHF ≤ log(q log p1/ log pN)/ log q =
log N/ log q + log p1/ log p.

The lower bound is similar to part (a). Let Lx be the line through (x, 0)

parallel to the y-axis. Let C be the projection of F onto the x-axis, as
above, so that C is a self-similar set subset of the x-axis formed by p1
similarities of ratios 1/p.

For all x ∈ C , except those x of the form jp−k where j and k are integers,
we have that Ek ∩ Lx consists of Nk intervals of length q−k . The mass
distribution principle (considering a mass such that each of these inter-
vals has mass N−k) gives that dimH(F ∩ Lx) ≥ log N/ log q. By Corol-
lary 7.12 dimHF ≥ dimHC + log N/ log q = log p1/ log p + log N/ log q,
so dimHF = log p1/ log p + log N/ log q.

9.14 We apply the formulae in Example 9.11 with:

p = 3, q = 6, N1 = 4, N2 = 1, N3 = 3, p1 = 3.

Thus, writing α = log p/ log q = log 3/ log 6,

dimHF = log


 p∑

j=1

N
log p/ log q

j


 1

log p
= log(4α + 1α + 3α)

log 3
= 1.518 . . .

and

dimBF = log p1

log p
+ log


 1

p1

p∑
j=1

Nj


 1

log q

= 1 +
log

(
1

3
(4 + 1 + 3)

)
log 5

= 1.627 . . . .

Chapter 10

10.1 F is the (non-empty compact) attractor of the IFS {S1, . . . , S5} where
Si = 1

10x + i−1
5 (i = 1, . . . , 5).
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Since
⋃5

i=1 Si(0, 1) =⋃5
i=1 Si(

i−1
5 , i−1

5 + 1
10 ) ⊂ (0, 1), the open set con-

dition holds with open set (0, 1), so by Theorem 9.3 dimHF = s, where
5 × (1/10)s = 1, that is dimHF = log 5/ log 10.

10.2 Let {S1, . . . , Sm} be given by Si = 1
m

x + i−1
m

(i = 1, . . . , m). Then,
since membership of F(p0, . . . , pm−1) is determined by the base-m digits
of a number after any given place,

m⋃
i=1

Si(F (p0, . . . , pm−1)) =
m⋃

i=1

[0, 1) ∩ F(p0, . . . , pm−1)

= F(p0, . . . , pm−1),

that is F(p0, . . . , pm−1) is a (non-compact) attractor of the Si .

10.3 With the notation of Section 10.1, the numbers in dimHF(1 − 3p, p, 2p)

have twice as many 2s as 1s for all 0 < p < 1
3 . Thus we must find the

maximum value of dimHF(1 − 3p,p, 2p) over such p. Proposition 10.1
gives

φ(p) ≡ dimHF(p, 2p, 1 − 3p)

= − 1

log 3
[(1 − 3p) log(1 − 3p) + p log p + 2p log 2p]

= − 1

log 3
[p(log p + 2 log 2p − 3 log(1 − 3p)) + log(1 − 3p)].

Then

dφ

dp
= − 1

log 3
[log p + 2 log 2p − 3 log(1 − 3p)]=− 1

log 3
log

4p3

(1 − 3p)3 .

Thus a maximum occurs when 4p3 = (1 − 3p)3 or p = 1/(3 + 41/3), that
is when(1 − 3p) = 41/3/(3 + 41/3). The value of the maximum is

φ(1/(3 + 41/3)) = 1

log 3

[
log(3 + 41/3) − 2

3
log 2

]
= 0.9660 . . . .

Thus the required Hausdorff dimension is 0.9660 . . . .

10.4 (i) To find the continued fraction expansion of 41/9, we first note that

41

9
= 4 + 5

9
= 4 + 1

9/5

so a0 = 4 and x1 = 9/5. Now

9

5
= 1 + 4

5
= 1 + 1

5/4
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so a1 = 1 and x2 = 5/4. Now

5

4
= 1 + 1

4

so a2 = 1 and a3 = 4. So

41

9
= 4 + 1

1+
1

1+
1

4
.

(ii) To find the continued fraction expansion of
√

5, we first note that
2 <

√
5 < 3 and so

√
5 = 2 + 1

x1
,

where x1 > 1 (that is, a0 = 2). Now

x1 = 1√
5 − 2

= 1√
5 − 2

√
5 + 2√
5 + 2

=
√

5 + 2

and so

x1 = 4 + 1

x2
,

where x2 > 1 (that is, a1 = 4). Now

x2 = 1

x1 − 4
= 1√

5 − 2
= x1

and so

x2 = 4 + 1

x3
,

where x3 = x2 > 1 (that is, a2 = 4). This process now repeats itself giving
4 = a3 = a4 = · · · . Thus

√
5 = 1 + 1

4+
1

4+
1

4 + · · · .

10.5 Letting x = 1 + 1
1+

1
1+

1
1+··· we see that x = 1 + 1/(1 + 1

1+
1

1+··· ) = 1 +
1/x. Thus x2 − x − 1 = 0, so x = 1+√

5
2 , the golden mean. (We take the

positive root of the quadratic equation since x is clearly positive.)
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10.6 We have
√

2 = 1 + 1
2+

1
2+

1
2+··· so that curtailing after each term gives

successive approximations to
√

2 = 1.41421 . . . of:

3

2
= 1.5,

7

5
= 1.4,

17

12
= 1.41666 . . . ,

41

29
= 1.41379 . . . ,

99

70
= 1.41428 . . .

(Compare this with
√

2 = 1.4142136 to 7 decimal places.)

10.7 This similar to Example 10.2, using Example 9.8. Let F denote the set of
positive numbers with infinite continued fraction expansions which have
all partial quotients equal to 2 or 3. Then each x ∈ F can be written as

x = a0 + 1

x1
,

where a0 is equal to 2 or 3 and x1 > 1, so 2 < x < 4. Now let S1, S2 :
[2, 4] → [2, 4] be given by

S1(x) = 2 + 1

x
and S2(x) = 3 + 1

x
.

We claim that F is the attractor of S1 and S2. To see this, we note that
from the definition of F and the continued fractions, we have that x ∈ F

if and only if either S1(x) ∈ F or S2(x) ∈ F . Thus F = S1(F ) ∪ S2(F ).
Clear F ⊂ [2, 4] is bounded, and non-empty, since 1 + 1

2+
1

2+
1

2+··· ∈ F .
To see that F is closed, note that its complement is open, since if

x = a0 + 1/(a1 + 1/(a2 + 1/(a3 + · · · ))) /∈ F

then ak �= 2, 3 for some k, so numbers whose continued fraction expansion
start

a0 + 1/(a1 + 1/(a2 + 1/(· · · + 1/(ak)))),

that is numbers close enough to x, are not in F .

Noting that S1([2, 4]) =
[
2 1

4 , 2 1
2

]
and S2([2, 4]) =

[
3 1

4 , 3 1
2

]
are disjoint,

we may use Propositions 9.6 and 9.7 to obtain estimates for the dimensions
of F .

For x ∈ [2, 4], i = 1, 2,

1

16
≤ |S′

i (x)| =
∣∣∣∣−1

x2

∣∣∣∣ ≤ 1

4
.

It follows from the mean-value theorem that, for x, y ∈ [2, 4], i = 1, 2,

1

16
|x − y| ≤ |Si(x) − Si(y)| ≤ 1

4
|x − y|,
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so in particular S1 and S2 are contractions. It follows from Propositions
9.6 and 9.7 that t ≤ dimHF ≤ s, where

2(1/16)t = 1 = 2(1/4)s;

that is,

21−4t = 1 = 21−2s .

Thus t = 1/4 and s = 1/2; that is

1/4 ≤ dimHF ≤ 1/2.

10.8 For a real number x and a positive integer Q, the set {rx (mod1) : r =
0, 1, . . . ,Q} contains Q + 1 numbers in the interval [0, 1], so two of these
numbers will differ by ≤ 1/Q; thus there are integers 0 ≤ r �= s ≤ Q such
that 0 ≤ (s − r)x (mod1) ≤ 1/Q. Letting q = |s − r| we have 0 < q ≤ Q

and −1/Q ≤ qx (mod1) ≤ 1/Q so that ‖qx‖ ≤ 1/Q.

If x is rational, then ‖qx‖ = 0 is an integer for infinitely many q, and
so ‖qx‖ ≤ q−1 infinitely often. If x is irrational, then for each K =
1, 2, . . . we may find, by the above, positive integers qK ≤ K such that
0 < ‖qKx‖ ≤ 1/K ≤ 1/qK . Since ‖qKx‖ �= 0 and 1/K → 0 as K → ∞,
there must be infinitely many distinct such qK .

10.9 If xn − dyn = 1, then

d1/n =
(

xn − 1

yn

)1/n

= x

y

(
1 − 1

xn

)1/n

.

Both d and y are positive integers so that x > 1 and hence 0 < 1 − 1/xn <

1. Thus

1 − 1

xn
<

(
1 − 1

xn

)1/n

< 1

and so ∣∣∣∣d1/n − x

y

∣∣∣∣ = x

y

∣∣∣∣∣
(

1 − 1

xn

)1/n

− 1

∣∣∣∣∣ < x

yxn
= 1

yxn−1
.

Since xn = 1 + dyn, and d ≥ 1, we have x > y and so∣∣∣∣d1/n − x

y

∣∣∣∣ < 1

yn
.

If xn − dyn = 1 has infinitely many solutions (x, y), where x and y are
positive integers, then, since it can have only one solution for each value
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of y, it follows that there are infinitely many positive integers y such that
|d1/n − x/y| < 1/yn for some integer x, that is, d1/n is n-well approx-
imable.

10.10 For m and n integers, (x, y) ∈ F if and only if (x + m, y + n) ∈ F . Thus
dimHF = dimHG, where G = F ∩ ([0, 1] × [0, 1]).

For each integer q, let Gq denote the set of (x, y) ∈ [0, 1] × [0, 1] such
that ‖qx‖ ≤ q1−α and ‖qy‖ ≤ q1−α . Then Gq can be covered by the
(q + 1)2 boxes of side 2/qα centered at the points (p/q, p′/q), where
0 ≤ p,p′ ≤ q. We denote this collection of boxes by Cq . Clearly G ⊂⋃∞

q=k Gq and so G can be covered by
⋃∞

q=k

⋃
U∈Cq

U . If k is sufficiently

large to ensure that 2
√

2/kα ≤ δ, then each of the boxes in Cq for q ≥ k

has diameter at most δ and so

Hs
δ(G) ≤

∞∑
q=k

(q + 1)2(2
√

2/qα)s .

If s = 3/α + ε for some ε > 0, then

∞∑
q=1

(q + 1)2(2
√

2/qα)s < 41+s

∞∑
q=1

q2/qαs = 41+s

∞∑
q=1

1/q1+αε < ∞

and so
∑∞

q=k(q + 1)2(2
√

2/qα)s → 0 as k → ∞. Since k → ∞ as δ →
0, it follows that

Hs(G) = lim
δ→0

Hs
δ(G) = 0,

if s > 3/α. Thus dimHF = dimHG ≤ 3/α.

10.11 We use the sets of large intersection of Section 8.2. Let

F = {x : x is α-well approximable }
= {x : ‖qy‖ ≤ q1−α for infinitely many q }.

Define f +
m , f −

m : [0, ∞) → R by f +
m (x) = x1/2 − m, f −

m (x) = −x1/2 −
m. By Proposition 10.4, F ∈ Cs[0, ∞) for all s < 2/α. Since f +

m , f −
m

are differentiable with derivative bounded away from 0 on [m,M] for all
0 < m < M , it follows from Proposition 8.8, by taking a countable union,
that

Fm = {x : (x + m)2 is α-well approximable}
= f +

m (F ∩ [0,∞)) ∪ f −
m (F ∩ [0,∞)) ∈ Cs(−∞, ∞).
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By Corollary 8.7,

dimH{x : (x + m)2 is α-well approximable for all m}

= dimH

( ∞⋂
m=−∞

Fm

)
≥ s

for all s < 2/α.

On the other hand,

dimH{x : (x + m)2 is α-well approximable for all m}

≤ dimH{x : x2 is α-well approximable } = 2/α

as in Proposition 10.4, so

dimH{x : (x + m)2 is α-well approximable for all m} = 2/α.

Chapter 11

11.1 If f ′ is continuous on [0, 1] then f ′([0, 1]) is bounded. Thus there exists
0 < c < ∞ such that |f ′(t)| ≤ c, for each t ∈ [0, 1]. It follows from the
mean-value theorem that, for 0 ≤ t, u ≤ 1,

|f (t) − f (u)| ≤ c|t − u|.

Thus (11.2) is satisfied with s = 1 and so it follows from Corollary 11.2(a)
that H1(graphf ) < ∞.

The graph of f is a continuous curve joining the points in the plane
(0, f (0)) and (1, f (1)). The projection of this curve onto the x-axis is the
interval [0, 1], so H1(graphf ) ≥ H1([0, 1]) = 1, by Proposition 2.2 and
(6.1). Thus 0 < H1(graphf ) < ∞.

To show that the graph is a regular set, we show that the graph is a
rectifiable curve and apply Lemma 5.5. For 0 = t0 < t1 < . . . < tm = 1
we have polygonal approximations to the length of the graph given by

m∑
i=1

|(ti , f (ti)) − (ti−1, f (ti−1))|

=
m∑

i=1

(
(ti − ti−1)

2 + (f (ti) − f (ti−1))
2
)1/2
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≤
m∑

i=1

(
(ti − ti−1)

2 + c2(ti − ti−1)
2
)1/2 = (1 + c2)1/2

m∑
i=1

|ti − ti−1|

= (1 + c2)1/2 < ∞.

Hence the supremum of the lengths of the polygonal approximations to
the graph is finite, so graphf is a rectifiable curve in the plane, and so by
Lemma 5.5 is a regular 1-set.

11.2 Assume that |f (t) − f (u)| ≤ c|t − u| for 0 ≤ t, u ≤ 1. Define ψ :
graphg → graph(f + g) by ψ(t, g(t)) = (t, f (t) + g(t)). Then

|ψ(t, g(t)) − ψ(u, g(u))|2 = |(t, f (t) + g(t)) − (u, f (u) + g(u))|2
= |t − u|2 + |f (t) − f (u) + g(t) − g(u)|2
≤ |t − u|2+2|f (t)−f (u)|2 + 2|g(t) − g(u)|2
≤ c|t − u|2 + 2|g(t) − g(u)|2
≤ c1(|t − u|2 + |g(t) − g(u)|2)
= |(t, g(t)) − (u, g(u))|2.

Thus ψ is Lipschitz. On the other hand,

|ψ(t, g(t)) − ψ(u, g(u))| = |(t, f (t) + g(t)) − (u, f (u) + g(u))|
≥ max{|t − u|, |f (t) − f (u) + g(t) − g(u)|}
≥ max{|t − u|, |g(t) − g(u)| − |f (t) − f (u)|}
≥ max{|t − u|, |g(t) − g(u)| − c|t − u|}
≥ ((c + 1)|t − u| + (|g(t) − g(u)| − c|t − u|)) /(c + 2)

= (|t − u| + |g(t) − g(u)|)/(c + 2)

≥ |(t, g(t)) − (u, g(u))|/(c + 2),

using that max{a, b} ≥ ((c + 1)a + b)/(c + 2). Thus ψ is bi-Lipschitz,
so that dimHgraphg = dimHgraph(f + g), with similar equality for box
dimensions.

11.3 If the box dimensions of graphf and graphg exist, then it follows from
Proposition 11.1 that

dimBgraphf = lim
δ→0

log Nδ

− log δ
= lim

δ→0

− log δ + log
∑m−1

i=0 Rf [iδ, (i + 1)δ]

− log δ

= 1 + lim
δ→0

log
∑m−1

i=0 Rf [iδ, (i + 1)δ]

− log δ
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and

dimBgraphg = 1 + lim
δ→0

log
∑m−1

i=0 Rg[iδ, (i + 1)δ]

− log δ
.

If dimBgraphf = dimBgraphg + 2ε, for some ε > 0, then it follows that
there exists δ0 > 0 such that, for all δ < δ0,

log
∑m−1

i=0 Rf [iδ, (i + 1)δ]

− log δ
>

log
∑m−1

i=0 Rg[iδ, (i + 1)δ]

− log δ
+ ε

and hence

m−1∑
i=0

Rf [iδ, (i + 1)δ] > e(− log δ)ε
m−1∑
i=0

Rg[iδ, (i + 1)δ]

= (1/δ)ε
m−1∑
i=0

Rf [iδ, (i + 1)δ].

Now, for any interval [t1, t2] ⊂ [0, 1],

Rf [t1, t2]−Rg[t1, t2] ≤ Rf +g[t1, t2]= sup
t1<t,u<t2

|f (t)+g(t) − f (t) − g(t)|

≤ Rf [t1, t2] + Rg[t1, t2].

So, for δ < δ0,

(1 − δε)

m−1∑
i=0

Rf [iδ, (i + 1)δ] ≤
m−1∑
i=0

Rf +g[iδ, (i + 1)δ]

≤ (1 + δε)

m−1∑
i=0

Rf [iδ, (i + 1)δ]

and hence

log
∑m−1

i=0 Rf +g[iδ, (i + 1)δ]

− log δ
≤ log

∑m−1
i=0 Rf [iδ, (i + 1)δ] + log(1 + δε)

− log δ

≤ log
∑m−1

i=0 Rf [iδ, (i + 1)δ] + δε

− log δ
.

Similarly,

log
∑m−1

i=0 Rf +g[iδ, (i + 1)δ]

− log δ
≥ log

∑m−1
i=0 Rf [iδ, (i + 1)δ] − δε

− log δ
.
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Thus

lim
δ→0

log
∑m−1

i=0 Rf +g[iδ, (i + 1)δ]

− log δ
= lim

δ→0

log
∑m−1

i=0 Rf [iδ, (i + 1)δ]

− log δ

and hence dimBgraph(f + g) = dimBgraphf .

To see why we must require dimBgraphf and dimBgraphg to be unequal,
consider the case when dimBgraphf > 1 and g(t) = −f (t) so that graph
f + g is a straight line and hence has box dimension one.

11.4 Given that (11.3) holds with 1 < s < 2, we have that, for all t ∈ [0, 1]
and 0 < δ ≤ δ0, there exists u with |t − u| ≤ δ such that

∣∣∣∣f (u) − f (t)

t − u

∣∣∣∣ ≥ cδ2−s

|t − u| ≥ c|t − u|2−s

|t − u| = c|t − u|1−s .

Hence

lim
u→t

∣∣∣∣f (u) − f (t)

t − u

∣∣∣∣ ≥ lim
u→t

c|t − u|1−s = ∞

and so the derivative f ′(t) at t does not exist.

This condition (11.3) is satisfied by the Weierstrass function, see the penul-
timate line of the Calculation of Example 11.3, so the Weierstrass function
is nowhere differentiable.

For the self-affine functions f of Example 11.4, note that from (11.9)
there is a number 0 < ε < 1 such that m−1+ε ≤ ci for all i. Thus, from
the calculation of Example 11.4, dm(−1+ε)k ≤ dci1 · · · cik ≤ Rf [Ii1,... ,ik ]
for each interval Ii1,... ,ik , this interval having length m−k . Thus given
t ∈ [0, 1] and 0 < δ < 1 we may find an interval I ≡ Ii1,... ,ik containing
t and with length |I | = m−k ≤ δ < m−k+1. There are points u1, u2 ∈ I

with

|f (u2) − f (u1)| = Rf [Ii1,... ,ik ] ≥ dm(−1+ε)k ≥ (δm−1)1−ε,

so since either |f (t) − f (u1)| ≥ 1
2 |f (u2) − f (u1)| or |f (t) − f (u2)| ≥

1
2 |f (u2) − f (u1)|, we conclude that there is u with |t − u| ≤ δ such that
|f (t) − f (u)| ≥ 1

2mε−1δ1−ε . This is condition (11.3) with s = 1 + ε, so
by the first part of the question, the self-affine function f is nowhere
differentiable.
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11.5 The calculation is similar to that for Example 11.3 and the solution to
Exercise 11.5. Given 0 < h < λ−1, let N be the integer such that

λ−(N+1) ≤ h < λ−N.

Then

|f (t + h) − f (t)| ≤
N∑

k=1

λ(s−2)k| sin(λk(t + h) + θk) − sin(λkt + θk)|

+
∞∑

k=N+1

λ(s−2)k| sin(λk(t + h) + θk) − sin(λkt + θk)|.

Let g(t) = sin(λkt + θk), then

|g′(t)| = λk| cos(λkt + θk))| ≤ λk

and so, by the mean-value theorem,

N∑
k=1

λ(s−2)k| sin(λk(t + h) + θk) − sin(λkt + θk)| ≤
N∑

k=1

λ(s−2)kλkh.

Since | sin t | ≤ 1 for all real values of t , we have

∞∑
k=N+1

λ(s−2)k| sin(λk(t + h) + θk) − sin(λkt + θk)| ≤
∞∑

k=N+1

2λ(s−2)k.

So,

|f (t + h) − f (t)| ≤
N∑

k=1

λ(s−2)kλkh +
∞∑

k=N+1

2λ(s−2)k

≤ hλ(s−1)N

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2
.

Since λ−(N+1) ≤ h < λ−N , it follows that

|f (t + h) − f (t)| ≤ hh1−s

1 − λ1−s
+ 2h2−s

1 − λs−2
≤ ch2−s,

where c is independent of h. It now follows from Corollary 11.2(a) that
dimBgraphf ≤ s.
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Similar arguments show that,

|f (t + h) − f (t) − λ(s−2)N (sin(λN(t + h) + θk) − sin(λN t + θk))|

≤
N−1∑
k=1

λ(s−2)kλkh +
∞∑

k=N+1

2λ(s−2)k

≤ hλ(s−1)(N−1)

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2

≤ λ(s−2)N−s+1

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2 ,

if λ−(N+1) ≤ h < λ−N .

We now observe that, since sin is a periodic function with period 2π and is
strictly increasing on (−π/2, π/2) and strictly decreasing on (π/2, 3π/2),
then there exists c > 0 such that, for each T ∈ R we may choose H with
1/2 ≤ H < 1 such that | sin(T + H) − sin T | > c.

We note that, if h = λ−N , then

λN(t + h) + θk − (λN t + θk) = λNh = 1,

and, if h = λ−(N+1), then

λN(t + h) + θk − (λN t + θk) = λNh = λ−1 < 1/2,

provided that λ > 10. Thus, if λ > 10, then, for each t ∈ (0, 1) and each
N , we may choose h with λ−(N+1) ≤ h < λ−N such that | sin(λN(t +
h) + θk) − sin(λN(t + h) + θk)| > c.

If λ is sufficiently large, then

λ(s−2)N−s+1

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2
<

cλ(s−2)N

2
,

for all N , and so, for each t ∈ (0, 1) and each N , we may choose h with
λ(−N+1) ≤ h < λ−N = δ such that

|f (t + h) − f (t)| ≥ cλ(s−2)N − cλ(s−2)N/2 ≥ cλ(s−2)N/2 ≥ cδ2−s/2.

It now follows from Corollary 11.2(b) that dimBgraphf ≥ s.

11.6 The calculation is similar to that for Example 11.3. Given 0 < h < λ−1,
let N be the integer such that

λ−(N+1) ≤ h < λ−N .
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Then

|f (t + h) − f (t)| ≤
N∑

k=1

λ(s−2)k|g(λk(t + h)) − g(λkt)|

+
∞∑

k=N+1

λ(s−2)k|g(λk(t + h)) − g(λkt)|.

We note from its zig-zag form that g is a Lipschitz function with

|g(t1) − g(t2)| ≤ |t1 − t2| for all t1, t2 ∈ R

and so

N∑
k=1

λ(s−2)k|g(λk(t + h)) − g(λkt)| ≤
N∑

k=1

λ(s−2)kλkh.

Since |g(t)| ≤ 1 for all real values of t , we have

∞∑
k=N+1

λ(s−2)k|g(λk(t + h)) − g(λkt)| ≤
∞∑

k=N+1

2λ(s−2)k.

Thus

|f (t + h) − f (t)| ≤
N∑

k=1

λ(s−2)kλkh +
∞∑

k=N+1

2λ(s−2)k ≤ ch2−s,

where c is independent of h. It now follows from Corollary 11.2(a) that
dimBgraphf ≤ s.

In the same way,

|f (t + h) − f (t) − λ(s−2)N (g(λN(t + h)) − g(λN t))|

≤ λ(s−2)N−s+1

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2
,

if λ−(N+1) ≤ h < λ−N .

We now observe that, since g is a periodic function with period 4 and
is strictly increasing on (−1, 1) and strictly decreasing on (1, 3), then
there exists c > 0 such that, for each t ∈ (0, 1) and each positive integer
N , we may choose h with 1/2 ≤ λNh < 1 such that |g(λN(t + h)) −
g(λN t)| > c. If λ > 2, then this implies that, for each t ∈ (0, 1) and each
positive integer N , we may choose h with λ(−N+1) ≤ h < λ−N such that
|g(λN(t + h)) − g(λN t)| > c. If λ is sufficiently large, then the right-hand
side of the last displayed inequality above will be less than cλ(s−2)N/2
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for all N . It then follows from the same inequality that, for each t ∈ (0, 1)

and each N , we may choose h with λ(−N+1) ≤ h < λ−N = δ such that

|f (t + h) − f (t)| ≥ λ(s−2)N/2 ≥ cδ2−s/2.

It now follows from Corollary 11.2(b) that dimBgraphf ≥ s.

11.7 From Proposition 2.3 and (11.2) we see that dimHf (F ) ≤ min{1, dimHF

/(2 − s)}.
More interesting is the dimension of the subset of graphf given by E =
{(t, f (t)) : t ∈ F }. Suppose that F ⊂ [0, 1] intersects Nδ(F ) of the δ-
mesh intervals. For such an interval I the maximum range R[I ] ≤ cδ2−s

by (11.2). Thus the portion of E above the interval I may be covered by
cδ2−sδ−1 + 1 = cδ1−s + 1 squares of side δ, so the number of squares of
side δ needed to cover E is Nδ(E) ≤ Nδ(F )(cδ1−s + 1). Hence

log Nδ(E)

− log δ
≤ log Nδ(F )

− log δ
+ log(cδ1−s + 1)

− log δ

so taking lower and upper limits as δ → 0 gives dimBE ≤ dimBF + (s −
1) and dimBE ≤ dimBF + (s − 1).

11.8 Define a measure µ on graphf by µ(A) = L1{t ∈ [0, 1] : (t, f (t)) ∈ A}
for A ⊂ R2, so that for measurable g : R2 → R we have

∫
g(x)dµ(x) =∫ 1

0 g(t, f (t))dt . Then

∫ ∫
dµ(x)dµ(y)

|x − y|s =
∫ ∫

|(t, f (t)) − (u, f (u))|−sdtdu

=
∫ ∫

[|t − u|2 + |f (t) − f (u)|2]−s/2dtdu < ∞

by the given condition. Since µ is supported by graphf , it follows from
Theorem 4.13(a) that dimH(graphf ) ≥ s.

11.9 Let S be a δ-mesh square of D. Then the maximum range over the square
R[S] = supt,u∈S |f (t) − f (u)| ≤ c(δ

√
2)3−s where 2 ≤ s < 3. Thus the

portion of the surface F = {(t, f (t)) : t ∈ D} above the square S may
be covered by c(δ

√
2)3−sδ−1 + 1 = c2(3−s)/2δ2−s + 1 cubes of side δ,

so the number of mesh cubes of side δ needed to cover F is Nδ(F ) ≤
(c2(3−s)/2δ2−s + 1)(δ−1 + 1)2 ≤ 20cδ−s for small δ. Hence

log Nδ(F )

− log δ
≤ log(20cδ−s)

− log δ
= log 20c − s log δ

− log δ

so taking upper limits as δ → 0 gives dimBF ≤ dimBF ≤ s.
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We now give a surface analogue to Corollary 11.2(b). Suppose that there
are numbers c > 0, δ0 > 0 and 2 ≤ s < 3 with the property: for each t ∈ S

and 0 < δ ≤ δ0 there exists u such that |t − u| ≤ δ and

|f (t) − f (u)| ≥ cδ3−s .

Then s ≤ dimBF where F = {(t, f (t)) : t ∈ S}.
To prove this, we note that for a square S of side δ the maximum range
R[S] = supt,u∈S |f (t) − f (u)| ≥ c(δ/2)3−s , so at least c(δ/2)3−sδ−1 =
c2s−3δ2−s cubes of side δ are needed to cover the portion of the sur-
face F above a square S of side δ. Thus the number of mesh cubes of
side δ needed to cover F is at least (c2s−3δ2−s)(δ−2) ≥ c2s−3δ−s . Hence

log Nδ(F )

− log δ
≥ log(c2s−3δ−s)

− log δ
= log(c2s−3) − s log δ

− log δ
,

so taking lower limits as δ → 0 gives dimBF ≥ s.

11.10 The transformations S1 and S2 are of the form (11.8) with

m = 2, a1 = 1/4, b1 = 0, c1 = 5/6, a2 = −1/4, b2 = 1/4, c2 = 5/6.

To verify that the attractor F of S1 and S2 is the graph of a continuous
function, we must check that conditions (11.9) and (11.10) are satisfied
with S1(p1), S2(p1) and p2 not all collinear. We begin by noting that

1/m = 1/2 < 5/6 = c1 = c2

so that (11.9) is satisfied. Also, p1 = (0, b1/(1 − c1)) = (0, 0) and p2 =
(1, (a2 + b2)/(1 − c2)) = (1, 0), so that S1(p1) = p1 = (0, 0), S2(p1) =
(1/2, 1/4) and p2 = (1, 0) are not all collinear.

We must now check that the fixed points p1 and p2 of S1 and S2 satisfy
S1(p2) = S2(p1). We have S2(1, 0) = (1/2, 1/4), so S1(p2) = S2(p1) =
(1/2, 1/4). Thus F is the graph of a self-affine continuous fractal curve.

We calculate that S1(q) = (1/4, 27/8) and S2(q) = (3/4, 5/2) so that E2
may be sketched.

The box dimension of F is given by the formula in Example 11.4:

dimBF = 1 + log(c1 + c2)

log m
= 1 + log(5/3)

log 2
= 1.737

to three decimal places.



70 Solutions to Exercises

11.11 The transformations S1, S2 and S3 are of the form (11.8) with

m = 3, a1 = 1/3, b1 = 0, c1 = 1/2, a2 = −2/3, b2 = 1/3, c2 = 1/2

a3 = 1/3, b3 = −1/3, c3 = 1/2.

To verify that the attractor F of S1, S2 and S3 is the graph of a continuous
function, we must check that conditions (11.9) and (11.10) are satisfied
with, say, S1(p1), S2(p1) and p2 not all collinear. We begin by noting that

1/m = 1/3 < 1/2 = c1 = c2 = c3

so that (11.9) is satisfied. Also, p1 = (0, b1/(1 − c1)) = (0, 0) and p3 =
(1, (a3 + b3)/(1 − c3)) = (1, 0), so that S1(p1) = p1 = (0, 0), S2(p1) =
S2(0, 0) = (1/3, 1/3) and p2 = (1, 0) are not all collinear.

Now note that S1(p3) = (1/3, 1/3) = S2(p1) and S2(p3) = (2/3, −1/3) =
S3(p1), so (11.10) is satisfied and so F is the graph of a self-affine
continuous fractal curve. The points on the polygon E2 may be calcu-
lated as: (0,0), (1/9,5/18), (2/9,1/18), (1/3,1/3), (4/9,5/18), (5/9, −5/18),
(2/3, −1/3), (7/9, −1/18), (8/9, −1/18), (1,0).

The box dimension of F is given by the formula in Example 11.4:

dimBF = 1 + log(c1 + c2 + c3)

log m
= 1 + log(3/2)

log 3
= 1.369

to three decimal places.

11.12 Let f : [0, 1] → R be the Weierstrass function. The calculation in Example
11.3 shows that there is a constant c such that |f (t + h) − f (t)| ≤ ch2−s

if 0 < h ≤ 1, so

1

2T

∫ T

−T

(f (t + h) − f (t))2dt ≤ c2h4−2s .

On the other hand, the end of the calculation in Example 11.3 shows that
for some constant c1 there exist numbers h > 0 arbitrarily close to 0 such
that |f (t + h) − f (t)| ≥ c1h

2−s for all t , so for such h

1

2T

∫ T

−T

(f (t + h) − f (t))2dt ≥ c1h
4−2s .

By (11.13)

log(C(0) − C(h)) = log

(
1

2
limT →∞

1

2T

∫ T

−T

(f (t + h) − f (t))2dt

)
.

Hence

limh→0
log(C(0) − C(h)

log h
= 4 − 2s.
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Chapter 12

12.1 In a similar way to Proposition 12.2, let F be an irregular 1-set in the unit
square such that proj0F contains the interval [0, 1] of the x-axis. Define
a mapping ψ : [0, 1] × [0, 1] → R2 by ψ(x, y) = (x(1 + y2)1/2, y). It is
easy to see that ψ is bi-Lipschitz and continuously differentiable, so ψ(F)

is an irregular 1-set. (Such maps preserve irregularity, see for example,
Exercise 5.2.) For all 0 ≤ d ≤ 1, there is a point (d, b) ∈ F for some b,
so there is a point (d(1 + b2)1/2, b) ∈ ψ(F), that is a point (a, b) ∈ ψ(F)

with a = d(1 + b2)1/2, that is with a/(1 + b2)1/2 = d .

By Proposition 12.1(b) the line set L(ψ(F )) has area 0. However, the line
y = a + bx is at perpendicular distance a/(1 + b2)1/2 from the origin, so
since there are points in ψ(F) for which this expression takes all values
in [0, 1], the set L(ψ(F )) contains lines at all perpendicular distances
between 0 and 1 from the origin, as required.

12.2 The mapping φ : R2 → R2 given by φ(r, θ) = (1/r, θ) transforms a line
at perpendicular distance R from the origin to a circle of radius 1/R

through the origin. Thus, taking E = L(ψ(F )) to be the set of the last
exercise, φ(E) contains a circle of radius 1/R through the origin for all
0 < R ≤ 1. Clearly, φ maps sets of area 0 to sets of area 0, so φ(E) is
a set of area 0 containing a circle of every radius ≥ 1. Taking a union⋃∞

n=1
1
n
φ(E), where 1

n
φ(E) is the set φ(E) scaled about the origin by a

factor 1
n

, we get a set of zero area containing a circle of every positive
radius.

12.3 This is a variation of Proposition 12.2. Let F be any irregular 1-set such
that the projection onto the x-axis contains the unit interval [0, 1]. By
Proposition 12.1(b) the line set L(F ) has area 0. The line L(a, b) given
by y = a + bx cuts the y axis at a = proj0(a, b), so since [0, 1] ⊂ proj0F ,
the line set L(F ) contains lines cutting the y-axis at every point of the
interval [0, 1]. Taking a countable union of translates

⋃∞
n=−∞(L(F ) +

(0, n)) gives a set of area 0 containing a line cutting the y-axis at each of
its point, which is essentially the required set.

12.4 This is an extension of the second part of Proposition 12.2. Writing
L(a, b) for the set of points in the plane on the line y = a + bx, let
E = {(a, b) : L(a, b) ⊂ F } so that F ⊃ L(E). Then, since F contains
a line in every direction θ for θ ∈ A, projπ/2E ⊃ {tan θ : θ ∈ A}. Thus
dimHE ≥ dimHprojπ/2E ≥ dimHA. By Proposition 12.1(a),

dimHF ≥ dimHL(E) ≥ min{2, 1 + dimHE}
≥ min{2, 1 + dimHA} = 1 + dimHA.
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12.5 Let A be a Borel subset of R2 of area a. For each θ ∈ [0, π) define
Aθ to be the set (1 + c2)−1(Aθ ∩ Lc), where c = tan θ , Lc is the line
x = c, and we have scaled the set Aθ ∩ Lc by a factor (1 + c2)−1. By
Theorem 6.9 there is a compact set F ⊂ R2 such that projθF ⊃ Aθ for all
θ and L1(projθF ) = L1(Aθ ) for almost all θ . By duality, writing L(F ) for
the line set of F , we have L(F ) ∩ Lc is congruent to projθF . It follows that
for all c we have L(F ) ∩ Lc ⊃ A ∩ Lc with L1(L(F ) ∩ Lc) = L1(A ∩
Lc) for almost all c, so we have L(F ) ⊃ A and on integrating L2(L(F )) =
L2(A), as required.

12.6 Note that if µ is supported by F then f (z) = ∫
F
(z − w)−1dµ(w) is ana-

lytic at z ∈ C \ F . Thus for F to be removable, there would have to be
an analytic function f̃ (z) with f (z) = f̃ (z) for z ∈ C\F . In particular, by
Cauchy’s identity, for every contour C we would require∫

C

f̃ (z)dz =
∫

C

f (z)dz =
∫

C

∫
F

dµ(w)

(z − w)
dz =
∫

F

∫
C

dz

(z − w)
dµ(w)

=
∫

F

2πidµ(w) = 2πiµ(F ) > 0,

provide C encloses F . By Cauchy’s theorem, f̃ (z) cannot be analytic on
any domain containing C, so F is not removable.

If 1 < dimHF , Theorem 4.13(b) gives a mass distribution µ on F and a
constant M such that

∫ |z − w|−1dµ(w) ≤ M for all z ∈ R2. Identifying
R with C gives ∣∣∣∣

∫
dµ(w)

(z − w)

∣∣∣∣ ≤
∫

dµ(w)

|z − w| ≤ M,

so by the first part, F is not removable.

12.7 Let F = {x1, . . . , xk} be a finite subset of C. Let V be an open domain
containing F and let f be a bounded analytic function on V \F , say
|f (z)| ≤ M . Let C be a contour in V enclosing F . Given ε > 0 let
C1, . . . , Ck be contours with centres x1, . . . , xk and radii ε; we may
assume that ε is small enough so that the contours are disjoint. By
Cauchy’s integral formula,

f (z) = 1

2πi

∫
C

f (w)dw

z − w
−
∑
j

1

2πi

∫
Cj

f (w)dw

z − w

for z inside C but outside all of the Cj (to see this make cuts to join the
contours Cj to C to form a single contour). Thus∣∣∣∣f (z) − 1

2πi

∫
C

f (w)dw

z − w

∣∣∣∣ ≤∑
j

1

2π

∣∣∣∣∣
∫

Cj

f (w)dw

z − w

∣∣∣∣∣ ≤
∑
j

1

2π

M2πε

d(z, Cj )
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where d(z, Cj ) is the distance from z to the contour Cj . Letting ε → 0
gives that

f (z) = 1

2πi

∫
C

f (w)dw

z − w
.

But this defines an analytic function throughout the interior of V including
at the points xj , so this formula defines the required analytic extension
of f .

Note that a slight modification of this proof shows that any compact set
F with H1(F ) = 0 is removable.

To see that the unit circle F is not removable, consider the function on
C\F given by f (z) = 2 if |z| < 1 and f (z) = 1/z if |z| > 1. Then f is
analytic and bounded on C\F , but clearly has no analytic extension to
any region containing F since such an extension would be discontinuous
on F . Thus F is not removable.

12.8 Define a function g by taking g(t) to be the point x ∈ graphf such that
graphf has a line of support with slope t at x; then g is defined on
some maximal sub-interval I of (−π/2, π/2). For each x ∈ graphf , we
have that g−1(x) is a closed interval, which is a single point if and only if
graphf has a unique tangent at x, that is if and only if f is differentiable at
x. For each k define the set Ak = {x : g−1(x) is an interval of length ≥
1/k}. Then since the intervals g−1(x) and g−1(y) are disjoint if x �=
y and g−1(R) = I ⊂ (−π/2, π/2), it follows that Ak contains at most
π/k points, so in particular Ak is finite. The set of x at which f is not
differentiable is

⋃∞
k=1 Ak which is therefore either finite or countable.

12.9 The function f : R2 → R given in coordinate form by f (x, y) = |x| is
easily seen to be convex, with set of non-differentiability the y-axis, which
has Hausdorff dimension 1.

The Weierstrass function f : R → R given by (11.4) is continuous but
nowhere differentiable, see Exercise 11.4, so the function g : R2 → R

given by g(x, y) = f (x) is nowhere differentiable on the plane, i.e. the
non-differentiability set has Hausdorff dimension 2.

12.10 Let G be a subgroup of (R, +). We have two cases:

(i) For all ε > 0 there exists x ∈ G ∩ (0, ε). Then for all y ∈ R and
ε > 0 we have nx ∈ (y − ε, y + ε) for some integer n, and also nx ∈
G, as an n-fold sum of x or −x. Hence the set of elements of G is
dense in R. Thus for every interval [a, b] we have dimB(G ∩ [a, b]) =
dimB(G ∩ [a, b]) = dimB[a, b] = 1, using proposition 3.4. (In any mean-
ingful sense dimBG = 1 also, though we have not defined box dimension
for unbounded sets.)
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(ii) There exists ε > 0 such that G ∩ (0, 2ε) = Ø. Then for all y ∈ R the
interval (y − ε, y + ε) contains at most one element of G (if it contained
two such elements their difference would be in (0, 2ε). It follows that for
every interval [a, b] the set G ∩ [a, b] is finite, so that dimB(G ∩ [a, b]) =
0, using Proposition 3.4. (In any meaningful sense dimBG = 0 also, though
we have not defined box dimension for unbounded sets.)

12.11 For 0 < t < 2 let F be the set in Example 12.4 with s = t/2, so
that F =⋃∞

r=1 Fr is a subgroup of R with dimHF = s and dimHFr =
dimBFr = s (from Example 4.7). Consider F × F . Then F × F is a group,
with (0, 0) ∈ F × F , with (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ F ×
F whenever x1, y1, x2, y2 ∈ F , using the group properties of F , and with
−(x, y) = (−x, −y) ∈ F × F whenever x, y ∈ F . By Product formula
7.2 and 7.3 dimH(Fr × Fr) = 2dimHF = t , so as F × F =⋃∞

r=1(Fr ×
Fr), we have that dimH(F × F) = t . Thus F × F is a subgroup of R2

with dimH(F × F) = t .

Chapter 13

13.1 Let f (x) = 2(1 − |2x − 1|), so if x ≤ 1/2, then f (x) = 2(1 + 2x − 1) =
4x, and if x ≥ 1/2, then f (x) = 2(1 − 2x + 1) = 4 − 4x. Note that f has
a maximum at x = 1/2 with f (1/2) = 2.

We note that there are two branches of f −1 defined on [0, 1]. It follows
from the definition of f that these are the two functions S1, S2 : [0, 1] → R

defined by

S1(x) = x

4
, S2(x) = 1 − x

4
.

These functions satisfy f (S1(x)) = f (S2(x)) = x, for x ∈ [0, 1]. Also, S1
and S2 are both contractions, since |Si(x) − Si(y)| = |x − y|/4, for x, y ∈
[0, 1] and i = 1, 2, and so it follows from Theorem 9.1 that there is a com-
pact set F satisfying F = S1(F ) ∪ S2(F ) given by F =⋂∞

k=0 Sk([0, 1]).
Clearly F is invariant for f since f (F ) = f (S1(F )) ∪ f (S2(F )) = F ∪
F = F .

We now show that F is a repeller for f . We begin by noting that, if
x < 0, then f n(x) → −∞ as n → ∞. Also, if x > 1, then f (x) < 0 and
so f n(x) → −∞ as n → ∞. Thus any repeller for f must be contained
in [0, 1]. If x ∈ [0, 1]\F , then, for some positive integer k, x /∈ Sk([0, 1])
and so f k(x) /∈ [0, 1]. Thus f n(x) → −∞ as n → ∞, for any x /∈ F , and
so F is indeed a repeller for f .

We now show that f is chaotic on F by denoting the points of F by
xi1,i2,... =⋂∞

k=1 Si1 ◦ Si2 · · · Sik ([0, 1]) with ij = 1, 2. We begin by not-
ing that |xi1,i2,... − xi′1,i

′
2,...

| ≤ 4−k if (i1, . . . , ik) = (i′1, . . . , i′k) and that
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f (xi1,i2,...) = xi2,i3,.... Now suppose that the sequence (i1, i2, . . . ) is an
infinite sequence with every finite sequence of 1s and 2s appearing as a
consecutive block of terms. In this case, the orbit {f k(xi1,i2,...)} is dense
in F since, if xi′1,i

′
2,...

∈ F and q ∈ Z+, then there exists k ∈ Z+ such that
(i′1, . . . , i′q) = (ik+1, . . . , ik+q) and hence

|f k(xi1,i2,...) − xi′1,i
′
2,...

| = |xik+1,ik+2,... − xi′1,i
′
2,...

| ≤ 4−q .

Now let xi1,i2,... denote any point in F . The point xi1,... ,ik,i1,... ,ik,i1,... is a
periodic point of f in F and

|xi1,i2,... − xi1,... ,ik,i1,... ,ik,i1,...| ≤ 4−k.

Thus the periodic points of f are dense in F .

Finally we show that the iterates of f have sensitive dependence on initial
conditions. Again, let xi1,i2,... denote any point in F and let xi′1,i

′
2,...

be
another point in F with (i1, . . . , ik) = (i′1, . . . , i′k) but ik+1 �= i′k+1. One of
f k(xi1,i2,...), f

k(xi′1,i
′
2,...

) belongs to [0, 1/4] whilst the other one belongs
to [3/4, 1]. Thus

|f k(xi1,i2,...) − f k(xi′1,i
′
2,...

)| ≥ 1/2

even though

|xi1,i2,... − xi′1,i
′
2,...

| ≤ 4−k.

F is the attractor of the similarities S1 and S2 given above, which have
ratios c1 = c2 = 1/4 and satisfy the open set condition (9.11) with V =
(0, 1) (since the sets S1(V ) = (0, 1/4) and S2(V ) = (3/4, 1) are disjoint
and contained in V ). Thus it follows from Theorem 9.3 that dimHF =
dimBF = s, where s is given by

1 =
2∑

i=1

cs
i = 2(1/4)s .

Thus s log(1/4) = log(1/2) and so

s = log(1/2)

log(1/4)
= log(1/2)

log(1/2)2
= 1

2
.

13.2 Inverting each of the three parts of the mapping defining f we get an
associated IFS {S1, S2, S3} on [0, 5] by taking

S1(x) = 1

5
x, S2(x) = 2 − 1

5
x, S3(x) = 2 + 1

5
x.

Then f (Si(x)) = x for i = 1, 2, 3 and x ∈ [0, 5].



76 Solutions to Exercises

The Si are contracting similarities, so the IFS has an attractor F satis-
fying F = S1(F ) ∪ S2(F ) ∪ S3(F ), with F =⋂∞

k=0 Sk([0, 5]). From the
definition of the Si as the branches of f −1, we see that f (F ) = F . To
see that F is a repeller for f , note that if x > 5 then f (x) = 5x − 10 =
3x + 2x − 10 > 3x, so f k(x) ≥ 3kx → ∞, and if x < 0 then f (x) = 5x

so f k(x) ≤ 5kx → −∞. If x ∈ [0, 5] \ F then x /∈⋂∞
k=0 Sk([0, 5]), so

that f k(x) /∈ [0, 5] for some positive integer k, so either f k(x) → ∞ or
f k(x) → −∞. Thus all points outside F are iterated to ±∞, so F is a
repeller.

The open set condition holds for the IFS {S1, S2, S3} taking (0, 5) as the
open set, with S1(0, 5) = (0, 1), S2(0, 5) = (1, 2), S3(0, 5) = (2, 3); since
each Si is a similarity of ratio 1/5, Theorem 9.3 gives that dimHF = s

where 3 × 5−s = 1, that is s = log 3/ log 5.

13.3 This is similar to the argument for the logistic map for large λ. Assuming
λ > 1, Write a = 1

π
sin−1 1

λ
so that fλ maps each of the intervals [0, a]

and [1 − a, 0] monotonically onto [0, 1]. Inverting the restriction of fλ to
each of these intervals we get an associated IFS {S1, S2} on [0, 1] given by

S1(x) = 1

π
sin−1 x

λ
, S2(x) = 1 − 1

π
sin−1 x

λ
.

Then f (Si(x)) = x for i = 1, 2 and x ∈ [0, 1].

Differentiating, |S′
i (x)| = π−1(λ2 − x2)−1/2, for i = 1, 2, so using the

mean value theorem.

1

πλ
= inf

x∈[0,1]
|S′

i (x)| ≤ |Si(x) − Si(y)|
|x − y| ≤ sup

x∈[0,1]
|S′

i (x)| = 1

π
√

λ2 − 1
(∗)

for x �= y. In particular, if (1 + π−2)1/2 < λ, S1 and S2 are contrac-
tions, so the IFS has an attractor F satisfying F = S1(F ) ∪ S2(F ) with
F = ⋂∞

k=0 Sk([0, 1]). From the definition of the Si as the branches of the
inverse of fλ, we see that fλ(F ) = F . To see that F is a repeller for fλ,
note that if x ∈ [0, 1] \ F then x /∈⋂∞

k=0 Sk([0, 1]), so that f k
λ (x) /∈ [0, 1]

for some positive integer k. Thus all points outside F are iterated to outside
[0, 1], so F is a repeller.

Since S1([0, 1]) and S2([0, 1]) are disjoint, Propositions 9.6 and 9.7 give
s ≤ dimHF ≤ t , where

2(πλ)−s = 1 = 2(π(λ2 − 1)1/2)−t

by (∗), giving

log 2/ log(πλ) ≤ dimHF ≤ log 2/ log(π(λ2 − 1)1/2).

Thus when λ is large, dimHF � log 2/ log(πλ).
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13.4 Suppose that f n
λ (x) → l as n → ∞. Then f n+1

λ (x) → l as n → ∞. Since

f n+1
λ (x) = λf n

λ (x)(1 − f n
λ (x)),

it follows that l = λl(1 − l). Thus either l = 0 or 1 = λ(1 − l); that is,
either l = 0 or l = 1 − 1/λ.

If x ∈ (0, 1), then

0 < f1/2(x) = 1

2
x(1 − x) < x/2.

Thus f n
1/2(x) is a decreasing sequence converging to 0.

Note that f2(x) = 2x(1 − x). Thus, if x ∈ (0, 1/2), then

x < f2(x) < 1/2.

Thus f n
2 (x) is an increasing sequence which is bounded above. It follows

that f n
2 (x) converges, so from the first part of the question, that f n

2 (x) con-
verges to 1 − 1/λ = 1/2. If x ∈ (0, 1/2), then 0 < f2(x) < x and f n

λ (x)

increases to 1/2 = 1 − 1/λ. If x ∈ (1/2, 1), then f2(x) ∈ (0, 1/2) and so
f n

2 (x) also converges to 1/2. Finally, f2(1/2) = 1/2 and so f n
2 (1/2) triv-

ially converges to 1/2.

Finally, we consider f4. We note that 0 is an unstable fixed point of f4
(since f4(0) = 0 and f ′

4(0) = 4 > 1) and so, if f n
4 (x) converges to 0, then

there must be some integer m for which f m
4 (x) = 0. Now f4(1) = 0 and

f4(1/2) = 1 so that f 2
4 (1/2) = 0. There are no other non-zero preimages

of 0 and 1 under f4 and hence 1/2 is the only non-zero preimage of 0
under f 2

4 . If 0 < x < 1, then there are exactly two points in (0, 1) which
map to x under f4. Thus, for each positive integer k, there are exactly
2k points in (0, 1) which map to x under f k

4 and hence to 0 under f k+2
4 .

These are the only points which converge to 0 under iteration.

Similarly, 3/4 = 1 − 1/λ is an unstable fixed point of f4 and so, if f n
4 (x)

converges to 3/4, then there must be some integer m for which f m
4 (x) =

3/4. For each k, there are exactly 2k points in (0, 1) which map to 3/4
under f k

4 and hence converge to 3/4 under iteration.

We have shown that there are countably many points x ∈ (0, 1) for which
f n

4 (x) → 0 as n → ∞ and countably many points x ∈ (0, 1) for which
f n

4 (x) → 3/4 as n → ∞. This leaves infinitely many points x ∈ (0, 1) for
which f n

4 (x) cannot converge (since any convergent sequence of iterates
must converge to either 0 and 3/4).

13.5 (i) We use proof by induction. If k = 0, then xk = 1
2 (1 − exp(2ka)) =

1
2 (1 − exp a) = x. Thus the formula is correct for k = 0. If the formula is
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correct for k, then

xk+1 = f2(xk) = 2xk(1 − xk)

= 2(1/2)(1 − exp(2ka))(1 − (1 − exp(2ka))/2)

= (1 − exp(2ka))(1/2 + exp(2ka)/2)

= (1/2)(1 − exp(2ka))(1 + exp(2ka))

= (1/2)(1 − exp(2k+1a)).

Thus, if the formula is correct for k, then it is also correct for k + 1.
Since we have shown that the formula is correct for k = 0, it follows by
induction that the formula is correct for all k.

(ii) We will use proof by induction. If k = 0, then xk = sin2(πa) = x.
Thus the formula is correct for k = 0. If the formula is correct for k, then

xk+1 = f4(xk) = 4xk(1 − xk)

= 4 sin2(2kπa)(1 − sin2(2kπa))

= 4 sin2(2kπa) cos2(2kπa)

= [2 sin(2kπa) cos(2kπa)]2

= sin2(2k+1πa).

Thus, if the formula is correct for k, then it is also correct for k + 1.
Since we have shown that the formula is correct for k = 0, it follows by
induction that the formula is correct for all k.

If a = 0 · a1a2 . . . in binary form, then

xk = sin2(2kπa) = sin2(a1a2 . . . ak · ak+1 . . . π)

= sin2(0 · ak+1 . . . π)

using the periodicity of the sine function. So, if a = 0 · a1 . . . apa1 . . .

apa1 . . . , then

xp = sin2(0 · a1 . . . apa1 . . . apa1 . . . π) = x;
that is, f

p

4 (x) = x.

We must now show that it is possible to choose a1, . . . , ap in such a way
as to ensure that the periodic point x is unstable; that is, |(f p

4 )′(x)| > 1.
Now

(f
p

4 )′(x) =
p−1∏
i=0

f ′
4(f

i
4 (x)),
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by the chain rule, and, for any x̂, we have f4(x̂) = 4x̂(1 − x̂) so that
f ′

4(x̂) = 4 − 8x̂. If x̂ = sin2(πâ′), then

f ′
4(x̂) = 4(1 − 2 sin2(πâ)) = 4 cos(2πâ).

Thus

(f
p

4 )′(x) = 4p

p∏
i=1

cos(0 · ai . . . apa1 . . . apa1 . . . π).

If p is odd, then we put

a1 . . . ap = 1010 . . . 101

and, if p is even, then we put

a1 . . . ap = 11010 . . . 101.

If

0 · ai . . . apa1 . . . apa1 . . . π > 0 · 101π = 5π/8

or

0 · ai . . . apa1 . . . apa1 . . . π < 0 · 011π = 3π/8,

then

| cos(0 · ai . . . apa1 . . . apa1 . . . π)| ≥ | cos(3π/8)| = | cos(5π/8)| > 0.38.

Otherwise, 0 · ai . . . apa1 . . . apa1 . . . π is close to π/2 and

| cos(0 · ai . . . apa1 . . . apa1 . . . π) cos(0 · ai+1 . . . apa1 . . . apa1 . . . π)|
≥ | cos(0 · 011101 . . . π) cos(0 · 11101π)|
≥ | cos(0 · 01111π) cos(0 · 111π)|
= | cos(15π/32) cos(7π/8)| > 0.098 × 0.92 > 0.09.

Now (0 · 38)2 > 0 · 09 and hence

|(f p

4 )′(x)| > (0.09)p/2 × 4p = (1 · 2)p > 1

as required.

Finally, we show that f4 has a dense orbit. Suppose that (a1, a2, . . . ) is
an infinite sequence with every finite sequence of 0s and 1s appearing as
a consecutive block of terms. We claim that the orbit {f k

4 (x)} is dense
in [0, 1], if x = sin2(πa), where a = 0 · a1a2 . . . . To show that this is
true, we take another point x′ ∈ [0, 1] with x′ = sin2(πa′), where a′ =
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0 · a′
1a

′
2 . . . in binary form. For each positive integer q, there exists k such

that (a′
1, . . . , a′

q) = (ak+1, . . . , ak+q). Thus

|f k
4 (x) − x′| = | sin2(0 · ak+1ak+2 . . . π) − sin2(0 · a′

1a
′
2 . . . π)|

= | sin2((a′ + ε)π) − sin2(a′π)|,
where |ε| ≤ 2−q . Since we can choose q to be arbitrarily large, it follows
that the orbit {f k

4 (x)} comes arbitrarily close to the point x′.

13.6 Let f : E → E be given by

f (x, y) =




(2x, λy)

(
0 ≤ x ≤ 1

2

)

(2x − 1, µy + 1/2)

(
1

2
< x ≤ 1

)

where 0 < λ, µ < 1/2, and let Ek = f k(E). Then Ek is a decreasing
sequence of sets and F =⋂∞

k=0 Ek satisfies f (F ) = F . Each set Ek

is made up of 2k horizontal strips of height at most Mk , where M =
max(λ, µ). Thus F is made up of horizontal lines with at least one line
in each strip of Ek . If (x, y) ∈ E, then f k(x, y) ∈ Ek and so the distance
of f k(x, y) from F is at most Mk . Since M < 1/2, it follows that every
point in E is attracted to F .

We now find the Hausdorff dimension of F . We begin by noting that
(0, 1] × F1 ⊂ F ⊂ [0, 1] × F1, where F1 is the attractor of the mappings
S1, S2 : [0, 1] → R defined by

S1(y) = λy, S2(y) = µy + 1/2.

Now S1 and S2 are contractions with ratios λ and µ. Since they also satisfy
the open set condition (9.11) with V = (0, 1), it follows from Theorem 9.3
that dimHF1 = dimBF1 = s, where s is given by 1 = λs + µs . It follows
from Corollary 7.4 that

dimH((0, 1] × F1) = dimH([0, 1] × F1) = 1 + s

and hence, by monotonicity, dimHF = 1 + s, where λs + µs = 1.

13.7 It may be verified computationally that the four sides of the quadrilateral
specified are mapped onto parabolae which lie inside the quadrilateral.

Iterates of a typical point give a plot similar to Figure 13.8.

13.8 This is very similar to the argument for the solenoid in Section 13.4. With

f (φ, w) = (3φ(mod2π), aw + 1
2 φ̂),
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we see that f k(D) is a solid tube of radius ak going round D 3k times.
The set F =⋂∞

k=1 f k(D) is compact and invariant under f and attracts
all points of D.

To find the dimensions of F , let Pφ be the half-plane bounded by the
central axis L and cutting the central circle of D at (φ, 0). Then f k(C)

is a smooth closed curve traversing the torus 3k times with total length at
most 3kc, where c is independent of k. The set f k(D) is a fattening of the
curve f k(C) to a tube of radius ak , so it may be covered by a collection
of balls of radii 2ak spaced at intervals ak along f k(C). Then 2 × 3kca−k

such balls will suffice, so applying Proposition 4.1 in the usual way, we
get dimHF ≤ dimBF ≤ 1 − log 3/ log a.

For a lower estimate, we consider the sections F ∩ Pφ for each φ. The
set f (D) ∩ Pφ contains three discs of radius a situated symmetrically
with centres at least 1

4 apart. Each of these discs contains three discs of
f 2(D) ∩ Pφ of radius a2 with centres at least 1

4a apart, and so on. Thus we
may regard F ∩ Pφ as formed by a standard nested construction, the kth
stage consisting of 3k discs of radius ak with centres separated by at least
1
4ak−1. We may define a mass distribution µ on F ∩ Pφ such that each
of the 3k level-k discs has mass 3−k . A standard application of the mass
distribution principle gives that dimH(F ∩ Pφ) ≥ − log 3/ log a. Since F is
built up from sections F ∩ Pφ (0 ≤ φ < 2π), a higher dimensional version
of Proposition 7.9 gives that dimHF ≥ 1 − log 3/ log a, so that dimHF =
dimBF = 1 − log 3/ log a.

The chaotic behaviour of f may be examined by noting that if
φ/2π = 0.a1a2 . . . to base 3, then f k(φ, w) = (φk, vk), where φk/2π =
0.ak+1ak+2 . . . and where the integer with base 3 representation
akak−1 . . . ak−d+1 determines which of the 3d discs of f d(D) ∩ Pφk

the point vk belongs to for d ≤ k. By choosing digits a1, a2, . . . suit-
ably, it is easy to produce orbits that are dense in f or which are
periodic.

13.9 Suppose that x = f (t) + ε for some ε �= 0. Then

h(t, x) = (λt, λ2−s(x − g(t)))

= (λt, λ2−s(ε + f (t) − g(t)))

=
(

λt, λ2−s

(
ε +

∞∑
k=1

λ(s−2)kg(λkt)

))

=
(

λt, λ2−sε +
∞∑

k=1

λ(s−2)(k−1)g(λkt)

)
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=
(

λt, λ2−sε +
∞∑

k=0

λ(s−2)kg(λk+1t)

)

= (λt, λ2−sε + f (λt)).

So, if (t, x) is at a vertical distance ε from graphf , then h(t, x) is at a
vertical distance λ2−sε > ε from graphf . It follows that the distance of
hn(t, x) from graphf tends to infinity as n → ∞ and so graphf is indeed
a repeller for h as claimed.

13.10 With the notation of Section 10.1, take µ to be the probability measure
P on [0,1] defined in (10.2). With F = F(p0, . . . , pm−1), Proposition
10.1 showed that P(F ) = 1 and that dimHF = −(

∑m−1
i=0 pi log pi)/ log m

which is strictly < 1 provided that the pi are not all equal, giving by
(13.16) dimHP ≤ dimHF < 1. However, F is dense in [0, 1], so that
dimHsptP = 1, giving dimHP < dimHsptP, as required.

13.11 Differentiating f we see that the Jacobian matrix of f is

J ≡ ∂f

∂(x, y)
=
(

1 1
1 2

)

at all (x, y) such that f (x, y) is not on the boundary of the unit square
E. Since the determinant of J is 1, the map is area preserving.

The eigenvalues of J are (3 ± √
5)/2, so we may choose orthogonal axes

such that, with respect to these axes, J is represented by the diagonal

matrix

(
(3 + √

5)/2 0
0 (3 − √

5)/2

)
. By the chain rule, the derivative

of the kth iterate f k is J k , which with respect to these axes is

(
((3 + √

5)/2)k 0
0 ((3 − √

5)/2)k

)

at all (x, y) such that f j (x, y) is not on the boundary of the unit square
E for all j = 1, 2, . . . , k, which is the case for L2-almost all (x, y) ∈
E. It follows from (13.9) that, for almost all (x, y), the Liapunov expo-
nents are

log(3 +
√

5)/2 and log(3 −
√

5)/2,

and thus these values are the Liapounov exponents of the cat map.
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Chapter 14

14.1 We may choose distinct points x1, x2 ∈ E and a number 0 < r1 ≤ 2−1

such that the discs B(x1, r1) and B(x2, r1) are disjoint. Since x1 and x2
are not isolated, we may, for i = 1, 2, choose xi,1, xi,2 ∈ E ∩ B(xi, r1)

and a number 0 < r2 ≤ 2−2 such that the discs B(xi,1, r2) and B(xi,2, r2)

are contained in B(xi, r1) and are disjoint. Proceeding in this way, we may
find distinct points xi1,i2,... ,ik ∈ E and discs B(xi1,i2,... ,ik , rk) with rk ≤ 2−k

such that B(xi1,i2,... ,ik,1, rk+1) and B(xi1,i2,... ,ik,2,rk+1) are disjoint sub-
discs of B(xi1,i2,... ,ik , rk).

For every infinite sequence i1, i2, . . . of 1s and 2s, let xi1,i2,... =⋂∞
i=0 B(xi1,i2,... ,ik , rk), which is a single point as the intersection of

closed discs of radii tending to 0. Since E is closed, xi1,i2,... ∈ E as the
limit as k → ∞ of xi1,i2,... ,ik ∈ E. Moreover, the xi1,i2,... are distinct, for
if i1, i2, . . . , ik−1, ik, ik+1, . . . and i1, i2, . . . , ik−1, jk, jk+1, . . . are dis-
tinct sequences of 1s and 2s with ik �= jk , then xi1,i2,... ,ik−1,ik,ik+1,... ∈
B(xi1,i2,... ,ik , rk) and xi1,i2,... ,ik−1,jk,jk+1,... ∈ B(xi1,i2,... ,ik−1,jk

, rk) are in
distinct level k discs. There are uncountably many sequences i1, i2, . . .

(such sequences are in correspondence with real numbers in [0, 1] numbers
expressed to base 2), so there are uncountably many points xi1,i2,... ∈ E.

14.2 We use the fact that, if f (z) = (α2z2 + 2αβz + β2 + c − β)/α, then
J (f ) = h−1(J (fc)), where fc(z) = z2 + c and h(z) = αz + β, see
Section 14.2. Here f (z) = z2 + 4z + 2 and so α2/α = 1, 2αβ/α = 4 and
(β2 + c − β)/α = 2. Thus α = 1, β = 2 and c = 2 + β − β2 = 0. So
fc(z) = z2 and hence J (fc) is the unit circle. Since h−1(z) = (z − β)/α =
z − 2, it follows that J (f ) is the circle of radius 1 whose centre is at −2.

14.3 We recall from Section 14.2 that if h(z) = αz + β and f (z) =
h−1(fc(h(z))) then J (f ) = h−1(J (fc)). Taking h(z) = z + i so h−1(z) =
z − i, this gives that the Julia set of f (z) = (z + i)2 + c − i = z2 + 2iz −
1 + c − i is J (fc) − i, which is congruent to J (fc). This Julia set is con-
nected if and only if c ∈ M , thus the Julia set of f (z) = z2 + 2iz + b is
connected if and only if c ∈ M where b = −1 + c − i, that is if and only
if b + 1 + i ∈ M .

14.4 If |c| ≤ 1
4 and |z| ≤ 1

2 , then

|fc(z)| = |z2 + c| ≤ |z|2 + |c| ≤
(

1

2

)2

+ 1

4
= 1

2
.

Thus if |z| ≤ 1
2 then, applying this inductively, |f k

c (z)| ≤ 1
2 for all k ∈ Z+.

In particular, |f k
c (z)| �→ ∞, so z ∈ K(fc), the filled in Julia set. Thus

B(0, 1
2 ) ⊂ K(fc).
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On the other hand, if |c| ≤ 1
4 and |z| ≥ 2, then

|fc(z)| = |z2 + c| ≥ |z|2 − |c| ≥ 2|z| − |c| ≥ 2|z| − 1

2
|z| = 3

2
|z|,

since |z| ≥ 2 ≥ 2|c|. Applying this repeatedly, if |z| ≥ 2 then |f k
c (z)| ≥

3
2 |f k−1

c (z)| ≥ . . . ≥ ( 3
2 )k|z| ≥ 2( 3

2 )k → ∞. We conclude that if |z| ≥ 2
then z /∈ K(fc), so K(fc) ⊂ B(0, 2).

From B(0, 1
2 ) ⊂ K(fc) ⊂ B(0, 2) we conclude that the Julia set, which is

the boundary of K(fc), lies in the annulus B(0, 2)\Bo(0, 1
2 ).

14.5 The fixed points of f are given by f (z) = z2 − 2 = z, so are z = −1, 2.
Since f ′(z) = 2z we have that |f ′(2)| = 4 > 1, so 2 is a repelling fixed
point.

By Theorem 14.10, 2 ∈ J (f ), so by Corollary 14.8(b), J (f ) is the closure
of
⋃∞

k=1 f −k(2). If w ∈ [−2, 2] then f −1(w) = (w + 2)1/2 ∈ [−2, 2], so
f −k(w) ∈ [−2, 2], and in particular f −k(2) ∈ [−2, 2], for all k ∈ Z+.
Thus J (f ) is contained in the closure of [−2, 2], that is J (f ) ⊂ [−2, 2].

Now observe that f (0) = −2 and f 2(0) = f (−2) = 2. Since 2 is a fixed
point of f , it follows that f k(0) = 2 for k = 2, 3, . . . , so f k(0) �→ ∞.
Thus −2 ∈ M by Theorem 14.14, so the Julia set J (f ) is connected. But
2 ∈ J (f ) and −2 ∈ J (f ) (since f −1(2) = {2, −2}), and the Julia set J (f )

is a connected subset of the interval [−2, 2] containing its endpoints −2
and 2, so this requires J (f ) = [−2, 2].

14.6 For z ∈ C we have fc(−z) = fc(z), so f k
c (−z) = f k

c (z) for all k ∈ Z+.
Thus f k

c (−z) → ∞ if and only if f k
c (z) → ∞, so that −z ∈ K(fc) if and

only if z ∈ K(fc). Thus the filled-in Julia set K(fc) is symmetric about
the origin, and its boundary, the Julia set J (fc), is also symmetric about
the origin.

14.7 Let c be real with c > 1
4 . Then f k

c (z) is real for all k ∈ Z+ and real z. In
particular, for real z,

fc(z) − z = z2 + c − z =
(

z − 1

2

)2

+
(

c − 1

4

)
≥
(

c − 1

4

)
.

Applying this repeatedly,

f k
c (z) ≥ z + k

(
c − 1

4

)
→ ∞.

We conclude that z /∈ J (fc) if z is real.
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The Julia set J (fc) is non-empty (by Proposition 14.2) and symmetric
about the origin (by Exercise 14.6), so there exists z ∈ C with z, −z ∈
J (fc). Since J (fc) contains no points on the real axis and z and −z lie
on opposite sides of the real axis, J (fc) is not connected. Thus by (14.4)
c /∈ M .

14.8 The fixed points of f = fc are given by z2 + c = z, that is z2 − z + c = 0
or z = 1

2 (1 ± (1 − 4c)1/2). The sum of these two distinct roots is 1, so we
may choose one of the fixed points w = 1

2 (1 + (1 − 4c)1/2), say, with
|w| > 1

2 . Thus |f ′(w)| = 2|w| > 1, so w is a repelling fixed point. The
number w is real if and only if (1 − 4c)1/2 is real, which is not the case
if c is non-real. Hence f ′(w) = 2w is not real.

We know from Theorem 14.16 that if |c| < 1
4 then the Julia set J = J (f )

is a simple closed curve. Suppose that this curve J has a tangent at w.
Since f (w) = w and f (J ) = J , and f is analytic near w, f maps a
neighbourhood of J containing w to a neighbourhood of J containing w.
To a first order approximation (considering the Taylor series expansion of
f around w), we have

f (w + z) = f (w) + f ′(w)z + O(z2) = w + f ′(w)z + O(z2).

In particular, f maps the tangent to J at w, which may be written paramet-
rically as {w + tz0 : t ∈ R} near w, onto a smooth curve that is tangential
to J at w of the form {w + tf ′(w)z0 + O(t2) : t ∈ R}. This is only possi-
ble if this curve is tangential to the original tangent at w, that is if f ′(w)

is real.

We conclude from the first part that if c is a non-real number with |c| < 1
4

then f ′(w) is not real, so J does not have a tangent at w.

If J contains an arc A, then we may find n ∈ Z+ such that f n(w) is a
interior point of the arc A, by Corollary 14.8. But f n is a smooth locally
bijective mapping that maps a non-differentiable arc of J containing w

into A, so that A cannot be differentiable.

14.9 If |c| ≤ 1
4 and |z| ≤ 1

2 , then using the triangle inequality

|fc(z)| = |z2 + c| ≤ |z|2 + |c| ≤
(

1

2

)2

+ 1

4
= 1

2
.

If |c| ≤ 1
4 , applying this inductively gives |f k

c (0)| ≤ 1
2 for all k ∈ Z+.

Thus f k
c (0) �→ ∞, so c ∈ M . Thus B(0, 1

4 ) ⊂ M .
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14.10 If |c + 1| ≤ 1
20 , we note that |c| ≤ 21

20 . Thus if |z| ≤ 1
10 , then using the

triangle inequality

|fc(fc(z))| = |(z2 + c)2 + c| = |z4 + 2cz2 + c(c + 1)|
≤ |z|4 + 2|c||z|2 + |c||c + 1|

≤
(

1

10

)4

+ 2
21

20

(
1

10

)2

+ 21

20

1

20
<

1

10
.

Thus if |c + 1| ≤ 1
20 then, applying this inductively, |f 2k

c (0)| ≤ 1
10 for all

k ∈ Z+. Thus f k
c (0) �→ ∞, so c ∈ M . Thus B(−1, 1

20 ) ⊂ M .

14.11 We have

|fc(z)| = |z2 + c| ≥ |z|2 − |c| = |z|
(

|z| − |c|
|z|
)

≥ |z|(2 + ε − 1)

≥ |z|(1 + ε),

provided that |z| ≥ max{2 + ε, |c|}.
If |c| > 2 we may choose ε > 0 such that |c| > 2 + ε, so noting that
fc(0) = c and applying the above estimate inductively,

|f k
c (0)| ≥ (1 + ε)k |c| → ∞.

Thus c /∈ M by Theorem 14.14.

14.12 If c is such that |f k
c (0)| > 2 for some k, then either

(i) |c| > 2 so c /∈ M by Exercise 14.11, or

(ii) |c| ≤ 2, and we may choose ε > 0 such that |f k
c (0)| > 2 + ε > |c|.

Then applying the first part of Exercise 14.11 repeatedly to z = f k
c (0) and

its iterates under fc, gives |f k+n
c (0)| = |f n

c (f k
c (0))| ≥ (1 + ε)n|f k

c (0)| →
∞, so c /∈ M .

On the other hand, if c /∈ M then |f k
c (0)| → ∞, so |f k

c (0)| > 2 for some k.

14.13 Let f (z) = z3 + cz, so f ′(z) = 3z2 + c. The fixed points of f are
0, ±√

1 − c, with f ′(0) = 0, f ′(±√
1 − c) = 3 − 2c. Hence, provided

|c| < 1, 0 is an attractive fixed point of f . But the Julia set of a polyno-
mial f is a closed curve precisely when f has an attractive fixed point,
see note before Theorem 14.16 (a proof along the lines of Theorem 14.16
works when this is the case).
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14.14 The solution is similar to the proof of Theorem 14.15. Let |c| >
√

2.
Let C be the circle |z| = |c| and let D be its interior |z| < |c|. If we
define S1, S2, S3 : D → D to be the branches of f −1(z) = (z − c)1/3, then
S1(D), S2(D) and S3(D) are the interiors of the three loops of the curve
f −1(C).

We now let V be the disc {z : |z| < |2c|1/3} so that V just con-
tains f −1(D). Note that, if |c| >

√
2, then V ⊂ D and so the sets

S1(V ), S2(V ), S3(V ) are all in V and the sets S1(V ), S2(V ), S3(V ) are
disjoint. For i = 1, 2, 3, we have

|S′
i (z)| = 1

3
|z − c|−2/3

and so, if z ∈ V ,

1

3
(|c| + |2c|1/3)−2/3 ≤ |S′

i (z)| ≤ 1

3
(|c| − |2c|1/3)−2/3.

It now follows from a complex mean-value theorem that

1

3

(
|c| + |2c|1/3

)−2/3 ≤ |Si(z1) − Si(z2)|
|z1 − z2| ≤ 1

3
(|c| − |2c|1/3)−2/3,

for i = 1, 2, 3 and z1, z2 ∈ V .

If |c| > 2 (for example), then the upper bound is less than 1 and so S1, S2
and S3 are contractions on the disc V . It follows from Theorem 9.1 that
there is a unique attractor F ⊂ V satisfying

S1(F ) ∪ S2(F ) ∪ S3(F ) = F.

It follows from Propositions 9.6 and 9.7 that lower and upper bounds for
dimHF are provided by the solutions of

3

(
1

3
(|c| ± |2c|1/3)−2/3

)s

= 1,

that is, by

s = log 3

log 3 + (2/3) log(|c| ± |2c|1/3)
.

So, when |c| is large,

dimHF ∼ 3 log 3

2 log |c| .
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It remains to show that F = J (f ). If |c| >
√

2 and |z| /∈ V , i.e. |z| >

|2c|1/3 then

|f (z)| = |z3 + c| ≥ |z|3 − |c| ≥ |z|3 − 1

2
|z|3 = 1

2
|z|3 = |z|1

2
|z|2

≥ |z|1

2
|2c|2/3 = λ|z|

where λ = 1
2 |2c|2/3 > 1

2 |2|2/3|2|1/3 = 1. Iterating, it follows that |f k(z)| ≥
λk|z| → ∞, so z /∈ J (f ). Thus J (f ) ⊂ K(f ) ⊂ V . It follows from Propo-
sitions 14.2 and 14.3 that J (f ) is the non-empty compact subset of V satisfy-
ing J (f ) = f −1(J (f )), that is, J (f ) = S1(J (f )) ∪ S2(J (f )) ∪ S3(J (f ))

and so J (f ) = F as claimed.

14.15 If fc(z) = z2 + c, then the fixed points of fc are the solutions of z2 + c =
z. Since f ′

c(z) = 2z, we see that z = reiθ is an attractive fixed point of fc

if and only if 0 ≤ r < 1/2, 0 ≤ θ < 2π and

c = z − z2 = z(1 − z) = reiθ (1 − reiθ ).

Thus fc has an attractive fixed point precisely when c lies inside the main
cardioid of the Mandelbrot set.

14.16 Since fc(z) = z2 + c and f 2
c (z) = fc(fc(z)), we have

f 2
c (z) − z = (z2 + c)2 + c − z

= z4 + 2cz2 − z + c2 + c

= (z2 − z + c)(z2 + z + c + 1).

Now z is a periodic point of fc of period 2 if and only if f 2
c (z) = z and

fc(z) �= z. Thus we are looking for the solutions of f 2
c (z) − z = 0 which

are not solutions of fc(z) − z = z2 − z + c = 0. In other words, we are
interested in the solutions of z2 + z + c + 1 = 0. By the chain rule

(f 2
c )′(z) = f ′

c(fc(z))f
′
c(z) = 2(z2 + c)2z

and so z is an attractive fixed point of f 2
c if and only if

|(z2 + c)z| < 1/4 and z2 + z + c + 1 = 0.

Using the second of these conditions to rewrite the first, we find that f 2
c

has an attractive fixed point if and only if

|(z2 + c)z| = |(z + 1)z| = |z2 + z| = |c + 1| < 1/4.

Thus f 2
c has an attractive fixed point precisely when c belongs to the main

bud of the Mandelbrot set; this is the region labelled 2 in Figure 14.8.
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14.17 Assume, for a contradiction, that c is not in the basin of attraction A(w)

of the (finite) attractive fixed point w of fc. Let U be an open disc with
w ∈ U ⊂ A(w). Then f k

c (c) /∈ U for all k = 0, 1, 2, . . . . Thus for each k

we may select a branch of the inverse f −k
c on U to be a continuous analytic

function with f −k
c (w) = w. If z ∈ f −k

c (U) then f k
c (z) ∈ U ⊂ A(w), so

z ∈ A(w); thus f −k
c (U) ⊂ A(w) for all k. Since A(w) is a bounded subset

of C, Montel’s theorem implies that {f −k
c }∞k=0 is a normal family on U .

However, since w is a repelling fixed point of f −1
c , no subsequence of

f −k
c (z) can be uniformly convergent to an analytic function near w (since

(f −k
c )′(w) = ((f −1

c )′(w))k → ∞ by the chain rule), so {f −k
c }∞k=0 cannot

be normal by the definition of a normal family. We conclude that c must
be in the basin of attraction A(w) of w.

Since c cannot be in the basin of attraction of more than one point, it
follows that fc has at most one (finite) attractive fixed point.

Now let f be any polynomial on C and let A(w) be the basin of attraction
of some (finite) attractive fixed point w of f . Assume, for a contradiction,
that c /∈ A(w) for all c ∈ C such that f ′(c) = 0. Let U be an open disc with
w ∈ U ⊂ A(w). Then f k(c) /∈ U for all k = 0, 1, 2, . . . and all c such that
f ′(c) = 0. This enables us to choose, for each k, a branch of the inverse
f −k on U that is a continuous analytic function with f −k(w) = w. If
z ∈ f −k(U) then f k(z) ∈ U ⊂ A(w), so z ∈ A(w); thus f −k(U) ⊂ A(w)

for all k. Since A(w) is a bounded subset of C, Montel’s theorem implies
that {f −k}∞k=0 is a normal family on U . However, since w is a repelling
fixed point of f −1, no subsequence of f −k(z) can have a subsequence
uniformly convergent to an analytic function near w , so {f −k}∞k=0 cannot
be normal by the definition of a normal family. We conclude that c ∈ A(w)

for some c with f ′(c) = 0.

14.18 Let f (z) = az2 + bz + d with a �= 0. Then f p is a polynomial of order
2p. Suppose that f p has an attractive fixed point w. By Exercise 14.17,
the basin of attraction A(w) of w under iteration of f p contains a point
c such that

0 = (f p)′(c) = f ′(c)f ′(f (c)) . . . f ′(f p−1(c))

= (2ac + b)(2af (c) + b) . . . (2af p−1(c) + b)

using the chain rule. It follows that for some 0 ≤ r ≤ p − 1 we have
0 = 2af r(c) + b, that is f r(c) = −b/2a for some c in A(w).

If f has an attractive periodic orbit of order p then f p has some attractive
fixed point w, so −b/2a is attracted to this periodic orbit under itera-
tion of f . We conclude that there can be at most one attractive periodic
orbit.
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Chapter 15

15.1 This is a particular case of the random Cantor set described in Section 15.1.
In this case

C1 = C2 = 1

3
with probability

1

2

C1 = C2 = 1

6
with probability

1

2

.

By Theorem 15.1, the Hausdorff dimension is given by the solution s of
the expectation equation

1 = E(Cs
1 + Cs

2) = 1

2
(3−s + 3−s) + 1

2
(6−s + 6−s) = 3−s + 6−s,

giving s = 0.4895 . . . .

15.2 This is a particular case of the random construction considered in Theorem
15.2. Since the number of segments at least doubles at each step, the proba-
bility of extinction occurring in the construction is 0. Writing C1, C2, C3, C4
for the length ratios of each of the four subsegments at each step, we have

C1 = C2 = C3 = C4 = 1

3
with probability

1

2

C1 = C4 = 1

3
and C2 = C3 = 0 with probability

1

2

.

By Theorem 15.2, the Hausdorff dimension is given by the solution s of
the expectation equation

1 = E

(
4∑

i=1

Cs
i

)
= 1

2
(4 × 3−s) + 1

2
(2 × 3−s) = 3 × 3−s .

Thus s = 1.

15.3 Let E0 be the (closed) parallelogram with vertices (0, 0), (1/2,
√

3/6), (1, 0)

and (1/2, −√
3/6), so that E0 has diameter 1. Let F be any ‘random’

von Koch curve constructed by substituting an upwards or downwards
figure at each stage. Let E1 be the set consisting of 4 similar parallel-
ograms of diameter 3−1 with axes on the 4 segments of the first stage
of the construction of F ; all these parallelograms are contained in E0.
Let E2 be the set consisting of similar parallelograms of diameter 3−2

with axes on the 42 segments of the second stage of the construction of
F , each contained in a parallelogram of E1, and so on. Thus Ek con-
sists of 4k parallelograms of diameters 3−k with disjoint interiors, each
contained in a parallelogram of Ek−1. Then F =⋂∞

k=0 Ek . By Proposition
4.1, dimHF ≤ dimBF ≤ limk→∞ log 4k/ − log 3−k = log 4/ log 3.
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For the lower bound, let µ be the mass distribution obtained by repeated
subdivision so that µ(P ) = 4−k for each parallelogram P of Ek . Then if
|U | < 1, and k is the integer such that 2−13−k−1 ≤ |U | < 2−13−k , it is
easy to see from the geometry of the parallelograms that U intersects at
most 6 parallelograms of Ek . Thus

µ(U) ≤ 6 × 4−k = 6 × 3−k log 4/ log 3 ≤ 6 × (6|U |)log 4/ log 3,

so it follows from the Mass distribution principle 4.2 that dimHF ≥ log 4/

log 3.

15.4 This fits into the context of Theorem 15.2. The expected number of sub-
triangles at each stage of the construction is 3p, so extinction of the
construction, leading to the empty set, will occur if and only if 3p ≤ 1,
that is if and only if p ≤ 1/3.

If p > 1/3, we have P(N = j) =
(

3
j

)
pj (1 − p)3−j , and by the bino-

mial theorem, equation (15.8) becomes (tp + (1 − p))3 = t. By Theorem
15.2 the smallest positive solution t of this cubic equation gives the prob-
ability that F is empty.

To find the dimension of F when it is non-empty, write C1, C2, C3 for the
ratios of the three similarities, so that Ci = 1

2 with probability p and Ci = 0
with probability 1 − p, independently for i = 1, 2, 3. Thus by (15.9), the
Hausdorff dimension is given by the solution s of the expectation equation

1 = E

(
3∑

i=1

Cs
i

)
= 3(p2−s + (1 − p)0) = 3p2−s .

Taking logarithms gives dimHF = s = log 3p/ log 2.

15.5 Let v be a vertex of a triangle T of the kth stage of the construction of the
standard Sierpiński triangle. We claim that in the random Sierpiński triangle
F , with probability 1 the set F ∩ T does not contain some neighbourhood
of v. To see this, let T ⊃ Tk+1 ⊃ Tk+2 ⊃ . . . be the nested triangles at
the subsequent stages of the standard Sierpiński triangle construction that
contain the vertex v. There is a probability p that each of these triangles is
retained in the random construction, so the probability that Tk+1, . . . , Tk+n

are all retained is pn. Using continuity of probabilities, since pn → 0 as
n → ∞, the probability that all the triangles Tk+1, Tk+2, . . . are retained is
0. Thus with probability 1, one of the triangles Tk+1, Tk+2, . . . is removed,
so (F ∩ T ) ⊂ (T \Tk+n) for some n.

Since there are countably many triangle vertices in the Sierpiński triangle
construction, with probability 1 the complement of F contains a neighbour-
hood of every one of these vertices. Thus, if x, y ∈ F , let T be a triangle of
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the standard Sierpiński triangle construction with x ∈ T and y /∈ T . There
is a neighbourhood of each of the three vertices of T that is not in F , and
these neighbourhoods disconnect x from the parts of F outside T , so x and
y are in different components of F .

15.6 Since the set F may be covered with either a single unit interval, or the
aggregate of coverings of F ∩ I1 and F ∩ I2, we have that

Hs
∞(F ) ≤ min{1,Hs

∞(F ∩ I1) + Hs
∞(F ∩ I2)}

≤ Cs
1
Hs∞(FnI1)

Cs
1

+ Cs
2
Hs∞(FnI2)

Cs
2

,

Since Hs∞(FnI1)/Cs
1 and Hs∞(FnI2)/Cs

2 are independent realizations of
Hs∞(F ) and independent of {C1, C2},

E(Hs
∞(F )) ≤ E(Cs

1H
s
∞(F ) + Cs

2H
s
∞(F ))

≤ E(Cs
1 + Cs

2)E(Hs
∞(F )) = E(Hs

∞(F )).

Thus equality holds, so since the terms are finite, either E(Hs∞(F )) = 0, or
Hs∞(F ) = Cs

1(Hs∞(FnI1)/Cs
1) + Cs

2(Hs∞(FnI2)/Cs
2) almost surely. In the

latter case

esssupHs
∞(F ) = esssup(Cs

1 + Cs
2)esssupHs

∞(F ).

Hence either esssup(Cs
1 + Cs

2) = 1, which would imply that Cs
1 + Cs

2 = 1
almost surely, since E(Cs

1 + Cs
2) = 1, or else Hs∞(F ) = 0 almost surely.

If Hs∞(F ) = 0 then given δ > 0, by scaling, if |Ii1,... ,ik | ≤ bk ≤ δ then
Hs

δ(F ∩ Ii1,... ,ik ) = 0, so by taking unions of such basic intervals Hs
δ(F ) =

0. Letting δ → 0 we conclude that Hs(F ) = 0.

15.7 Writing CI,j = |Ii1,... ,ik,j |/|Ii1,... ,ik | where I = Ii1,... ,ik , we have that

E
(
X2

k+1|Fk

)
= E
(( ∑

I∈Ek+1

|I |s
)2

|Fk

)

= E
(( ∑

I∈Ek

|I |s(Cs
I,1 + Cs

I,2)

)2∣∣∣∣Fk

)

= E
( ∑

I �=J∈Ek

|I |s |J |s(Cs
I,1 + Cs

I,2)(C
s
J,1 + Cs

J,2)

+
∑
I∈Ek

|I |2s(Cs
I,1 + Cs

I,2)
2|Fk

)
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=
∑

I �=J∈Ek

|I |s |J |s +
∑
I∈Ek

|I |2sE
(
(Cs

1 + Cs
2)

2
)

≤
( ∑

I∈Ek

|I |s
)2

+ a
∑
I∈Ek

|I |2s = X2
k + a

∑
I∈Ek

|I |2s,

where a = E((Cs
1 + Cs

2)
2) and we have used (15.2). Taking unconditional

expectations, we get

E(X2
k+1) ≤ E(X2

k ) + aE
( ∑

I∈Ek

|I |2s

)
= E(X2

k ) + a(E(C2s
1 + C2s

2 ))k

= E(X2
k ) + aγ k,

where γ = E(C2s
1 + C2s

2 ) < 1, using (15.3) repeatedly. Applying this (k −
1) times,

E(X2
k ) ≤ E(X2

1) + a(γ + γ 2 + . . . + γ k−1) ≤ E(X2
1) + aγ/(1 − γ )

for all k. Thus X2
k is an L2 bounded martingale.

15.8 Fix p > p0, and let r > 0 be the probability that the random fractal Fp

constructed by the percolation process is non-empty and therefore, with the
same probability, contains a non-trivial connected component. Let I be a
square that is retained at some kth level of the 3 × 3 fractal percolation
construction. There is a probability p(1 − p)8 that at the (k + 1)th stage
of the construction the middle (k + 1)th level subsquare of I is selected
and the other 8 sub-squares are removed, and by self-similarity there is
a probability of r that this middle square intersects Fp in a non-trivial
connected component. Thus there is a probability at least s ≡ rp(1 − p)8

that a square I retained at the kth level contains a non-trivial connected
component of Fp that does not extend outside I .

Given ε > 0 and a probability s, the laws of large numbers imply that
there is an integer N0 such that, if N ≥ N0, in N independent trials each
with probability s of success, there is a probability of at least 1 − ε that
at least Ns/2 of the trials will be successful. Thus, suppose that, for some
k there are at least N squares in Ek . There is a probability of at least
s that, independently, each of these squares contains a distinct non-trivial
connected component, so there is a probability of at least 1 − ε that at least
Ns/2 of these squares contain a non-trivial connected component.

Finally, with r the probability of Fp being non-empty, given ε > 0 and N ,
there is an integer k such that with probability at least r − ε the kth level
stage of the construction, Ek , contains at least N squares. (This follows
from extinction properties of branching processes.) Thus, given ε > 0 there
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is a probability of at least (r − ε)(1 − ε) > r − 2ε that Fp contains at least
Ns/2 distinct connected components. Since this is true for all ε > 0 and
N ≥ N0, the random set Fp contains infinitely many distinct connected
components with probability r .

Chapter 16

16.1 Let Nδ(X[0, 1]) denote the (random) least number of sets of diameter δ that
can cover the Brownian trail X[0, 1]. Then for each n, since the Brownian
trails X[(i − 1)2−n, i2−n] for i = 1, 2, . . . , 2n have the same distribution
as X[0, 1] but under a similarity scaling by a factor 2−n/2, we conclude
that N2−n/2(X[(i − 1)2−n, i2−n]) has the same statistical distribution as
N1(X[0, 1]). In particular, taking expectations,

E(N2−n/2(X[(i − 1)2−n, i2−n])) = E(N1(X[0, 1])),

so taking the aggregate of such coverings,

E(N2−n/2(X[0, 1])) ≤ 2nE(N1(X[0, 1])).

Thus, for all ε > 0, we have

E(2−n(1+ε)N2−n/2(X[0, 1])) ≤ 2−nεE(N1(X[0, 1])).

Summing,

E

( ∞∑
n=1

2−n(1+ε)N2−n/2(X[0, 1])

)
≤

∞∑
n=1

2−nεE(N1(X[0, 1])) < ∞.

Thus, with probability 1,
∑∞

n=1 2−n(1+ε)N2−n/2(X[0, 1]) < ∞, implying
that for some random number C we have N2−n/2(X[0, 1]) ≤ C2n(1+ε) for
all n, and so by Proposition 4.1 that dimBX[0, 1] ≤ 2(1 + ε) for all ε > 0.
We conclude that dimBX[0, 1] ≤ 2.

16.2 This is a variation on the proof of Theorem 16.2. Consider Brownian
motion X : [0, 1] → R3. Let 0 < λ < 1/2. By an obvious modification of
Proposition 16.1, there is with probability 1 a (random) number B such
that

|X(t) − X(u)| ≤ B|t − u|λ (t, u ∈ [0, 1]),

so by Proposition 2.3 dimHX(F) ≤ (1/λ)dimHF = log 2/λ log 3. This is
true for all 0 < λ < 1/2, so dimHX(F) ≤ 2 log 2/ log 3 = log 4/ log 3.

For the lower bound, we define a measure by transferring Hausdorff mea-
sure on the Cantor set F to the trail. With q = log 2/ log 3, define a random
measure µ on X(F) by µ(A) = Hq{t : t ∈ F and X(t) ∈ A} for A ⊂ R3.
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Thus for a function g on R3 we have
∫

g(x)dµ(x) = ∫
F

g(X(t))dHq (t).
Then for s < 2 log 2/ log 3

E
(∫∫

|x − y|−sdµ(x)dµ(y)

)
= E
(∫

F

∫
F

|X(t) − X(u)|−sdtdu

)

=
∫

F

∫
F

E(|X(t) − X(u)|−s)dtdu

= c1

∫
F

∫
F

|t − u|−s/2dtdu < ∞

using Exercise 4.11, with c1 as in (16.8). It follows from Theorem
4.13(a) that dimHX(F) ≥ s for all s < 2 log 2/ log 3, so dimHX(F) ≥
2 log 2/ log 3 = log 4/ log 3.

If X is index-α fractional Brownian motion, we get, in a similar way, that
dimHX(F) = log 2/α log 3, using that, with probability 1, X satisfies a
Hölder condition of index λ for all 0 < λ < α (Proposition 16.6). For the
lower bound we replace (16.8) by E(|X(t + h) − X(t)|−s ) = c1h

−sα .

16.3 The approach here is similar to that in Theorem 16.3. Suppose, for a con-
tradiction, that X[0, 1] ∩ F = Ø with probability 1. Using the isotropy and
scaling of Brownian trails in R3, it follows that for every similarity σ , the
probability that σ(X[0, 1]) ∩ F = Ø is also 1. By Fubini’s theorem, with
probability 1 we have that σ(X[0, 1]) ∩ F = Ø for almost all similari-
ties σ . But with, probability 1, dimHX[0, 1] = 2, so since dimHX[0, 1] +
dimHF − 3 > 2 + 1 − 3 = 0, this contradicts Theorem 8.2(a). We con-
clude that X[0, 1] intersects F with positive probability.

16.4 The easiest way to see this is to note that the affine transforma-
tion f : R2 → R2 given by f (t, u) = (t, u + ct) is bi-Lipschitz (since

the matrix

(
1 0
c 1

)
is invertible). Then f (graphX(t)) = graph(X(t) +

ct), so dimH(graph(X(t) + ct)) = dimH(graphX(t)) = 1 1
2 almost surely,

using Corollary 2.4 and Theorem 16.4.

16.5 Let t = t0 < t1 < . . . < tn = u. Then X(ti−1) ≤ X(ti) with probabil-
ity 1

2 , independently for i = 1, 2, . . . , n. Hence the probability that
X(ti−1) ≤ X(ti) for all i = 1, 2, . . . , n is 2−n and similarly the prob-
ability that X(ti−1) ≥ X(ti) for all i = 1, 2, . . . , n is 2−n. If X(t) is
monotonic on [t, u] then one of these possibilities must occur, so
P(X(t) is monotonic on [t, u]) ≤ 2 × 2−n. This is true for all positive
integers n, so P(X(t) is monotonic on [t, u]) = 0.

Since there are countably many rational numbers, there are countably
many ‘rational intervals’, i.e. intervals with rational endpoints. Since a
countable union of events each of probability 0 has probability 0, we
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conclude that P(X(t) is monotonic on some rational interval = 0. Since
every non-degenerate interval contains a rational interval, this implies that
P(X(t) is monotonic on some interval = 0.

16.6 First we show that there is a number γ > 0 such that, given X[0, 1], the
probability that X(t) = 0 for some t > 1 is at least γ , i.e.

P(X(t) = 0 for some t > 1|X(t) (0 ≤ t ≤ 1)) ≥ γ. (1)

To see this, suppose that X(1) = −M < 0. Then, conditional on this, using
(16.2),

P(X(t) = 0 for some t > 1) ≥ P(X(1 + M2) − X(1) > M)

= 1

M
√

2π

∫ ∞

M

exp

(−x2

2M2

)
dx

≥ 1

M
√

2π

∫ 2M

M

exp(−2)dx

= exp(−2)√
2π

≡ γ,

with similar estimates if X(1) = M ≥ 0. In particular, it follows from (1)
that

P(X(t) = 0 for some t > 1|X(t) �= 0 (0 < t ≤ 1)) ≥ γ.

Now set p = P(X(t) = 0 for some 0 < t ≤ 1). By statistical self-similarity
of Brownian motion, for every N > 0,

p = P(X(t) = 0 for some 0 < t ≤ N}, (2)

so taking a union over all positive integers N , and noting that these are
decreasing events (i.e. if N1 < N2 and X(t) �= 0 for 0 < t ≤ N2 then X(t) �=
0 for 0 < t ≤ N1), we conclude that p = P(X(t) = 0 for some t > 0). But

p = P(X(t) = 0 for some t > 0)

≥ P(X(t) = 0 for some 0 < t ≤ 1)

+ P(X(t) �= 0 for 0 < t ≤ 1 and

X(t) = 0 for some t >1)

= p + P(X(t) = 0 for some t > 1|X(t) �= 0 (0 < t ≤ 1))

× P(X(t) �= 0 (0 < t ≤ 1))

≥ p + γ (1 − p)

using the definition of conditional probability (1.15). Thus p ≥ p + γ (1 −
p) which requires 1 − p = 0, that is p = 1. Thus with probability 1,
X(t) = 0 for some t > 0.



Solutions to Exercises 97

By (2), with probability 1, X(t) = 0 for some 0 < t ≤ 1/n, for all n =
1, 2, . . . . This can only happen if X(t) = 0 infinitely often in every interval
(0, a) with a > 0.

16.7 Let X be Brownian motion. As in (16.4), with h > 0,

p(r) ≡ P(0 ≤ X(t + h) − X(t) ≤ r) = 1√
2πh

∫ r

0
exp

(−x2

2h

)
dx.

Thus

E(|X(t + h) − X(t)|q) = 2
∫ ∞

0
rqdp(r)

= 2√
2πh

∫ ∞

0
rq exp

(−r2

2h

)
dr

= 2√
2π

hq/2
∫ ∞

0
uq exp

(−u2

2

)
du,

= chq/2

on substituting u = r/
√

h, as required.

16.8 Let λ > α. Suppose that, for a given t and b, there almost surely exists
H0 such that

|X(t + h) − X(t)| ≤ b|h|λ for all |h| ≤ H0. (1)

Then, by Egoroff’s theorem, there exists h0 > 0 such that with probability
at least 1/2 we have |X(t + h) − X(t)| ≤ b|h|λ for all |h| ≤ h0.

On the other hand, from (16.10), we have

P(|X(t + h) − X(t)| ≤ b|h|λ) = 2√
2π

|h|−α

∫ b|h|λ

0
exp

( −u2

2|h|2α

)
du

≤ 2√
2π

|h|−α

∫ b|h|λ

0
1du

= 2√
2π

b|h|λ−α,

so by taking h sufficiently small we get a contradiction.

We conclude that for all t , with probability 1 there is no number H0 such
that (1) holds. Thus, by Fubini’s theorem, with probability 1, there is, for
almost all t , no H0 such that (1) holds.

16.9 Write X(t) = (X1(t), X2(t)), where X1 and X2 are independent index-α1
and index-α2 fractional Brownian motions, with 1/2 ≤ α1 ≤ α2 < 1. To
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get an upper bound for the dimension of X[0, 1] we use the Hölder esti-
mate of Proposition 16.6. Thus, given ε > 0, there are, with probability 1,
(random) constants 0 < B1, B2 < ∞ such that for t, u ∈ [0, 1]

|X1(t) − X1(u)| ≤ B1|t − u|α1−ε,

|X2(t) − X2(u)| ≤ B2|t − u|α2−ε.

Thus, for k = 1, 2, . . . , if |t − u| ≤ 2−k then X[t, u] is contained in a
rectangle with sides B12−k(α1−ε) and B22−k(α2−ε). Dividing this rectan-
gle into approximate squares of sides at most B22−k(α2−ε), the rectan-
gle, and thus X[t, u], may be covered by 2B12−k(α1−ε)/B22−k(α2−ε) =
(2B1/B2)2k(α2−α1) sets of diameter at most 2B22−k(α2−ε), provided k is
sufficiently large. Thus, dividing the interval [0, 1] into 2k subintervals of
length 2−k , the trail X[0, 1] may be covered by (2B1/B2)2k(1+α2−α1) sets
of diameter at most 2B22−k(α2−ε). It follows by Proposition 4.1 that

dimHX[0, 1] ≤ dimBX[0, 1] ≤ lim
k→∞

log((2B1/B2)2k(1+α2−α1))

− log(2B22−k(α2−ε))

= 1 + α2 − α1

α2 − ε
,

for all ε > 0, so dimHX[0, 1] ≤ (1 + α2 − α1)/α2.

For the lower bound we use the potential theoretic method. We need to esti-
mate the integral E((|X1(t + h) − X1(t)|2 + |X2(t + h) − X2(t)|2)−s/2),
so we first consider the X1 part. Write

p(r) = P(0 ≤ X1(t + h) − X1(t) ≤ r)

= 1

hα1(2π)1/2

∫ r

0
exp(−x2/2h2α1)dx, (1)

by (16.10). For fixed y,

E((|X1(t + h)−X1(t)|2 + y2)−s/2)

= 2
∫ ∞

0
(r2 + y2)−s/2dp(r)

= ch−α1

∫ ∞

0
(r2 + y2)−s/2 exp(−r2/2h2α1)dr

= c

∫ ∞

0
(u2h2α1 + y2)−s/2 exp(−u2/2)du

≤ c

∫ y/hα1

0
y−s exp(−u2/2)du + c

∫ ∞

y/hα1
(uhα1)−s exp(−u2/2)du



Solutions to Exercises 99

≤ c

∫ y/hα1

0
y−sdu + c

∫ ∞

y/hα1
(uhα1)−sdu

≤ c1y
1−sh−α1

where c, c1 do not depend on h, and we have substituted u = r/hα1 .

Using the analogue of (1) for index-α2 fractional Brownian motion, we
get in a similar way,

E((|X1(t + h) − X1(t)|2 + |X2(t + h) − X2(t)|2)−s/2)

= E((c1|X2(t + h) − X2(t)|1−sh−α1)

= c2h
−α2

∫ ∞

0
y1−sh−α1 exp(−y2/2h2α2)dy

= c2h
−α1+(1−s)α2

∫ ∞

0
u1−s exp(−u2/2)du

= c3h
−α1+(1−s)α2

where we have substituted u = y/hα2 .

Define a random measure on X[0, 1] by µ(A) = L{t : 0 ≤ t ≤
1 and X(t) ∈ A}, so that for f : R2 → R,

∫
f dµ = ∫ 1

0 f (X(t))dt . Then

E
(∫∫

|x − y|−sdµ(x)dµ(y)

)

= E

(∫ 1

0

∫ 1

0
(|X1(t) − X1(u)|2 + |X2(t) − X2(u)|2)−s/2)dt du

)

=
∫ 1

0

∫ 1

0
E((|X1(t) − X1(u)|2 + |X2(t) − X2(u)|2)−s/2))dt du

≤
∫ 1

0

∫ 1

0
c3|t − u|−α1+(1−s)α2dt du.

This is finite if −α1 + (1 − s)α2 > −1, that is if s < (α2 − α1 + 1)/α2.
Thus if s < (α2 − α1 + 1)/α2 then almost surely the trail X[0, 1] supports
a measure µ with finite s-energy, so by Proposition 4.13, dimHX[0, 1] ≤
(α2 − α1 + 1)/α2 almost surely.

16.10 We take as our starting point that for index-α fractional Brownian motion
E(X(t)2) = |t |2α and E((X(t) − X(u))2) = |t − u|2α . Expanding the latter,

|t − u|2α = E(X(t)2) + E(X(u)2) − 2E(X(t)X(u))

= |t |2α + |u|2α − 2E(X(t)X(u))
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so
2E(X(t)X(u)) = |t |2α + |u|2α − |t − u|2α.

Thus

2E((X(t) − X(0))(X(t + h) − X(t)))

= 2(E(X(t)X(t + h)) − E(X(0)X(t + h)) − E(X(t)X(t))+E(X(0)X(t)))

= (|t |2α + |t + h|2α − |h|2α) − 0 − (2|t |2α) + 0

= |t + h|2α − |t |2α − |h|2α,

giving

E((X(t) − X(0))(X(t + h) − X(t))) = 1

2
(|t + h|2α − |t |2α − |h|2α).

For t, h �= 0, we have, by elementary calculus, that if 1
2 < α < 1 then |t +

h|2α > |t |2α + |h|2α, so E((X(t) − X(0))(X(t + h) − X(t))) > 0, and the
increments X(t) − X(0) and X(t + h) − X(t) are positively correlated.
Thus if the sample path has increased after a certain time, there is a
tendency for it to continue to increase, and if it has decreased there is a
tendency for it to decrease further.

Similarly, if 0 < α < 1
2 then |t + h|2α < |t |2α + |h|2α, so E((X(t) −

X(0))(X(t + h) − X(t))) < 0, and the increments X(t) − X(0) and
X(t + h) − X(t) are negatively correlated. Thus if the sample path has
increased after a certain time, there is a tendency for it to decrease.

Chapter 17

17.1 The Legendre transform is infq{e−q + qα}. Writing g(q) = e−q + qα we
have

dg

dq
= −e−q + α,

d2g

dq2
= e−q,

so g takes a minimum at q = − log α, so the Legendre transform is elog α −
α log α = α(1 − log α).

17.2 If x ∈ sptµ1 then µ2(B(x, r)) = 0 is r is small enough, since the supports
of µ1 and µ2 are disjoint, so ν(B(x, r) = µ1(B(x, r)) for small r , giv-
ing dimlocν(x) = dimlocµ1(x). Similarly, if x ∈ sptµ2 then dimlocν(x) =
dimlocµ2(x). Thus

{x : dimlocν(x) = α} = {x : dimlocµ1(x) = α} ∪ {x : dimlocµ2(x) = α}.
We get the fine spectra by taking the Hausdorff dimensions of these
sets, so

f ν
H(α) = max{f 1

H(α), f 2
H(α)}.
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Taking µ1 and µ2 to be self-similar measures, such that f 1
H and f 2

H are
different concave functions with graphs that cross, f ν

H will fail to be a
convex function.

17.3 Suppose that b|x − y| ≤ |g(x) − g(y)| ≤ c|x − y| where 0 < b ≤ c.
Then for x ∈ Rn we have g(B(x, r/c)) ⊂ B(g(x), r) ⊂ g(B(x, r/b)),
or B(x, r/c) ⊂ g−1(B(g(x), r)) ⊂ B(x, r/b). Thus µ(B(x, r/c)) ≤
ν(B(g(x), r)) ≤ µ(B(x, r/b)). Taking logarithms, for small enough r .

log µ(B(x, r/c))

log r/c + log c
≥ log ν(B(g(x), r))

log r
≥ log µ(B(x, r/b))

log r/b + log b
,

so letting r → 0, we get dimlocµ(x) ≥ dimlocν(g(x)) ≥ dimlocµ(x)

assuming these limits exist, so dimlocν(g(x)) = dimlocµ(x).

It follows that for all α

g{x : dimlocµ(x) = α} = {y : dimlocν(y) = α};

since g is bi-Lipschitz the sets {x : dimlocµ(x) = α} and {y : dimlocν(y) =
α} have the same dimension, that is the fine (Hausdorff) multifractal spec-
tra for µ and ν are identical.

17.4 We have
1 = p

q

1 r
β(q)

1 + p
q

2 r
β(q)

2 = (p
q

1 + p
q

2 )4−β(q).

Taking logarithms,

β(q) = log(p
q

1 + p
q

2 )

log 4
.

For each q,

α = −dβ

dq
= −p

q

1 log p1 + p
q

2 log p2

(p
q

1 + p
q

2 ) log 4
,

so

f (α) = −q
dβ

dq
+ β(q) = −q(p

q

1 log p1 + p
q

2 log p2)

(p
q

1 + p
q

2 ) log 4
+ log(p

q

1 + p
q

2 )

log 4
.

17.5 First, take r = 4−k . With the intervals Ii1,... ,ik in the construction of the
middle half Cantor F set indexed in the usual way, see (17.22), we get
from (17.6):

M4−k (q) =
∑

i1,... ,ik

µ(Ii1,... ,ik )
q =
∑

i1,... ,ik

p
q
i1

. . . p
q
ik

= (p
q

1 + p
q

2 )k.
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Now suppose that 4−k−1 ≤ r < 4−k . Then each mesh interval of length r

intersects at most one of the k-th level component intervals Ii1,... ,ik of F ,
and each Ii1,... ,ik intersects at most 3 mesh intervals of length r . Thus

3−q(p
q

1 + p
q

2 )k =
∑

i1,... ,ik

(
1

3
µ(Ii1,... ,ik )

)q

≤ Mr(q)

≤ 3
∑

i1,... ,ik

µ(Ii1,... ,ik )
q = 3(p

q

1 + p
q

2 )k.

Hence

log 3−q(p
q

1 + p
q

2 )k

− log 4−k−1
≤ log Mr(q)

− log r
≤ log 3(p

q

1 + p
q

2 )k

− log 4−k

or

−q log 3 + k log(p
q

1 + p
q

2 )

(k + 1) log 4
≤ log Mr(q)

− log r
≤ log 3 + k log(p

q

1 + p
q

2 )

k log 4
.

Letting r → 0, so k → ∞, and (17.7) gives β(q) = lim
r→0

log Mr(q)

− log r

= log(p
q

1 + p
q

2 )

log 4
.

17.6 By (17.26), p
q

1 ( 1
2 )−β + p

q

2 ( 1
4 )−β = 1. This is a quadratic equation

in x = ( 1
2 )−β , that is p

q

2 x2 + p
q

1 x − 1 = 0. Thus x = (−p
q

1 + (p
2q

1 +
4p

q

2 )1/2)/2p
q

2 (taking the positive solution since x > 0). Hence

β(q) = − log x

log 2
= log(2p

q

2 ) − log((p
2q

1 + 4p
q

2 )1/2) − p
q

1 )

log 2
.

17.7 From (17.13)

β(q) − β(−q) = log(p
q

1 + p
q

2 ) − log(p
−q

1 + p
−q

2 )

log 3

= log p
q

1 p
q

2 (p
−q

1 + p
−q

2 ) − log(p
−q

1 + p
−q

2 )

log 3

= log p
q

1 p
q

2

log 3
= q log(p1p2)

log 3
.
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Thus

f (α) = inf
q

{β(q) + qα} = inf
q

{
β(−q) + q

(
α + log(p1p2)

log 3

)}

= inf
q

{
β(q) − q

(
α + log(p1p2)

log 3

)}

= f

(
−α − log(p1p2)

log 3

)
.

17.8 Since p1 < p2,

β(q) = log(p
q

1 + p
q

2 )

log 3
= log p

q

2 (1 + (p1/p2)
q)

log 3

= q log p2 + log(1 + (p1/p2)
q)

log 3

= q log p2

log 3
+ O((p1/p2)

q)) = q log p2

log 3
+ o(1)

as q → ∞. Similarly

β(q) = q log p1

log 3
+ o(1)

as q → −∞.

Thus if the β curve approaches the line β = aq + b as q → ∞, a =
log p2/ log 3 and b = 0. Thus β = q log p2/ log 3 is the asymptote as q →
∞, and similarly β = q log p1/ log 3 is the asymptote as q → −∞, both
of these lines passing through the origin.

The slopes of the asymptotes give the extreme values of α, so
αmin = − log p2/ log 3 and αmax = − log p1/ log 3. Moreover, f (αmin) =
f (αmax) = 0, since these values are given by the intercepts of the asymp-
totes with the vertical axis.

17.9 From (17.34) df/dα = q, so d2f/dα2 = dq/dα = 1/(dα/dq) =
1/(−d2β/dq2) < 0, since β(q) is convex, using that α = −dβ/dq.

17.10 Clearly, β(1) = 0. For 0 < q < 1, we have, by Hölder’s inequality, that

m∑
i=1

p
q
i r

1−q
i ≤

(
m∑

i=1

pi

)q ( m∑
i=1

ri

)1−q

< 1.

Since
∑m

i=1 p
q
i r

β(q)
i = 1, we have β(q) < 1 − q.
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For q > 1, by Hölder’s inequality

1 =
m∑

i=1

pi =
m∑

i=1

(pir
(1−q)/q
i )(r

(q−1)/q
i )

≤
(

m∑
i=1

p
q

i r
1−q

i

)1/q ( m∑
i=1

ri

)(q−1)/q

.

Hence 1 <
∑m

i=1 p
q

i r
1−q

i , so β(q) > 1 − q.

17.11 Note that for all x ∈ R2 and r > 0 we have proj(B(x, r)) =
BL(projx, r), so

(projµ)(BL(projx, r)) = µ{y ∈ R2 : projy ∈ BL(projx, r)} ≥ µ(B(x, r)).

Thus

limr→0
log((projµ)(BL(projx, r)))

log r
≤ limr→0

log µ(B(x, r))

log r
.

17.12 Take ε > 0. Let Qk denote those kth level sequences i = (i1, . . . , ik) ∈ Ik

such that µ(Ii) ≤ |Ii|α−ε . For q < 0:∑
i∈Qk

|Ii|β+q(α−ε) ≤
∑
i∈Qk

|Ii|βµ(Ii)
q ≤
∑
i∈Ik

|Ii|βµ(Ii)
q

=
∑

i1,... ,ik

(ci1ci2 . . . cik )
β(pi1pi2 . . . pik )

q

=
(

m∑
i=1

p
q
i c

β
i

)k

= 1,

using a multinomial expansion and (17.26).

For each integer K , write

FK
α = {x ∈ F : µ(Ik(x)) ≤ |Ik(x)|α−ε for all k ≥ K},

where Ik(x) is the kth level interval containing x. Then for all
k ≥ K , the set FK ⊂⋃i∈Qk

Ii, so Hβ+q(α−ε)

ck (FK) ≤ 1, since for
a kth level interval, |Ii| ≤ ck where c = max1≤i≤m ci . Letting k →
∞ gives Hβ+q(α−ε)(FK) ≤ 1, so that dimH(FK) ≤ β + q(α − ε). But
Fα ⊂⋃∞

K=1 FK , since if log µ(Ik(x))/ log |Ik(x)| → α then µ(Ik(x)) ≤
|Ik(x)|α−ε for all k sufficiently large. Thus dimH(Fα) ≤ β + q(α − ε) for
all ε > 0, giving dimH(Fα) ≤ β + qα.
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17.13 In the partial proof of Theorem 17.4, if we set

FK = {x ∈ F : µ(Ik(x)) ≥ |Ik(x)|α+ε for some k ≥ K}
then, as before, dimH

⋃∞
K=1 FK ≤ β + q(α + ε). But

S ≡ {x ∈ F : lim
k→∞

log µ(Ik(x))/ log |Ik(x)| ≤ α} ⊂
∞⋃

K=1

FK,

so dimHS ≤ β + q(α + ε) for all ε > 0, so dimHS ≤ β + qα.

Chapter 18

18.1 From the way that densities of s-dimensional sets behave, see Chapter 5,
we might heuristically expect that µ(B(0, r)) ∼ crs where µ is the mass
of the deposit and c is a constant. Thus the number of shaded squares k

might be considered proportional to this mass ∼ c1r
s , so r ∼ c2k

1/s .

18.2 Again arguing heuristically, a rate of mass deposition proportional to r(t)

implies that
dm

dt
= cr(t) ∼ c0m

1/s

using m(t) ∼ cr(t)s . Thus, m−1/s
dm

dt
∼ c0, so solving this differential

equation with m(0) = 0 gives m1−1/s ∼ c0t , so m(t) ∼ c1t
s/(1−s), and by

Exercise 18.1, r(t) ∼ c2m(t)1/s ∼ t1/(1−s).

18.3 We may express u(y, t + h) in terms of u(y, t) by

u(y, t + h) = 1

2πh

∫
exp

(−(x − y)2

2h

)
u(x, t)dx.

Differentiating with respect to h

∂u

∂h
= 1

2π

∫
exp

(−(x − y)2

2h

)
u(x, t)

[
(x − y)2

2h3
− 1

h2

]
dx.

Now, with x = (x1, x2) and y = (y1, y2), differentiating with respect to yi

gives

∂u

∂yi

= 1

2πh

∫
exp

(−(x − y)2

2h

)
u(x, t)

[
xi − yi

h

]
dx,

∂2u

∂y2
i

= 1

2πh

∫
exp

(−(x − y)2

2h

)
u(x, t)

[
(xi − yi)

2

h2
− 1

h

]
dx.
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Thus

∇2u = ∂2u

∂y2
1

+ ∂2u

∂y2
2

= 1

2π

∫
exp

(−(x − y)2

2h

)
u(x, t)

[
(x − y)2

h3
− 2

h2

]
dx,

so
∂u

∂h
= 1

2
∇2u.

18.4 We first establish the identity

∫ ∇2ψ(x)

|y − x| dx = −4πψ(y)

for a smooth (twice continuously differentiable, say) ψ(x) that is zero for all
sufficiently large x. To see this, note that for small ε > 0, since ∇2(1/1y −
x1) = 0 for x �= y,

∫
|y−x|≥ε

∇2ψ(x)dx

|y − x| =
∫

|y−x|≥ε

[∇2ψ(x)

|y − x| − ψ(x)∇2 1

|y − x|
]

dx

= −
∫

|y−x|=ε

[ ∇ψ

|y − x| − ψ(x)∇ 1

|y − x|
]

.dn(x) (1)

where n(x) denotes the outwards pointing unit normal at x on the sphere
|y − x| = ε. Here we have used Green’s theorem for a region between a
sphere of radius ε and a large sphere on which ψ(x) = 0. Differentiating

with respect to each coordinate gives ∇x

1

|y − x| = − (x − y)

|y − x|3 . Hence (1)

gives

∫ ∇2ψ(x)

|y − x| dx = lim
ε→0

∫
|y−x|≥ε

∇2ψ(x)

|y − x| dx

= − lim
ε→0

∫
|y−x|=ε

[∇ψ

ε
+ ψ(x)

(x − y)

ε3

]
.dn(x)

= −4πψ(y), (2)

since φ is continuous at y, and
∫
|y−x|=ε

∇ψε−1. dn(x) = O(ε), and more-

over
∫
|y−x|=ε

(x − y).dn(x) = 4πεε2.

Now let f be continuous and integrable on R3 and let φ(x) =
∫

f (y)

|y − x|dy.

Let ψ(x) be any smooth function vanishing for all sufficiently large x. Using
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Green’s formula,

∫
ψ∇2φdx =

∫
φ∇2ψdx =

∫∫
f (y)∇2ψ(x)

|y − x| dx dy

=
∫

f (y)

∫ ∇2ψ(x)

|y − x| dx dy

= −
∫

4πf (y)ψ(y)

using (2). Hence,
∫
(∇2φ + 4πf )ψ = 0 for all smooth ψ vanishing for

large x, so by an orthogonality argument, ∇2φ + 4πf = 0, as required.

18.5 Assume that f (x) = 0 for x /∈ B(0, r). Using the Cauchy-Schwartz inequal-
ity and setting R = r + |x|, we have

φ(x)2 =
(∫

B(0,r)

f (y)dy

|x − y|
)2

≤
∫

B(0,r)

f (y)2dy

∫
B(0,r)

dy

|x − y|2

≤ c

∫
B(0,R)

dy

|x − y|2

= c

∫
θ∈S

∫ R

r=0

r2drdθ

r2
< ∞,

changing to polar coordinates, with S the unit sphere. Thus the singularity
set of x, that is x such that φ(x) = ∞, is empty.

18.6 Let µ = ν × m be the measure on F = D × L where ν is t-dimensional
Hausdorff measure restricted to a self-similar Cantor dust of dimension t

(satisfying the open set condition) and m is the restriction of 1-dimensional
Lebesgue measure to the line segment L. Then, as in Exercise 9.11, there
are constants c1, c2 such that if x ∈ D and r < 1/2, we have c1r

t ≤
ν(B(x, r)) ≤ c2r

t . Writing C(w, r) for the cylinder with axis L(w) parallel
to L, center w = (x, z) ∈ D × L, radius r and height 2r , it follows that

c1r
t+1 = c1r

t r ≤ ν(B(x, r)) × m(L(w))

= µ(C(w, r)) ≤ c2r
t2r = 2c2r

t+1.

Since C(w, 2−1/2r) ⊂ B(w, r) ⊂ C(w, r), it follows that

2−(t+1)/2c1r
t+1 ≤ µ(B(w, r)) ≤ 2c2r

t+1.
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With s = t + 1 and redefining c1 and c2, we are in the situation of Section
18.3, again with ∫

|h|≤r

〈ε(x)ε(x + h)dh〉 ∼ rs,

but this time with the dissipation occurs around the stratified set F .

18.7 For a von Koch curve of base length a, the resonant wavelengths are given
by the basic similarity sizes: a, 3−1/2a, 3−1a, 3−3/2 . . . (remembering that
the von Koch curve comprises two similar copies at scale 3−1/2). Thus
the resonant frequencies are proportional to the reciprocals ω, 31/2ω, 3ω,

33/2, . . . .

18.8 With Bα index-α fractional Brownian motion, we have from (16.10)

p(r) ≡ P(0 ≤ Bα(t + h) − Bα(t) ≤ r) = 1√
2πhα

∫ r

0
exp

(−x2

2h2α

)
dx,

In particular

E(|Bα(t + h) − Bα(t)|q) = 2
∫ ∞

0
rqdp(r)

= 2√
2πhα

∫ ∞

0
rq exp

( −r2

2h2α

)
dr

= chqα

∫ ∞

0
uq exp

(−u2

2

)
du

on setting u = r/hα . Thus

E(|X(t + h) − X(t)|q) = E(|Bα(T (t + h)) − Bα(T (t))|q )

= c1|T (t + h) − T (t)|qα

= c1µ[t, t + h]qα ∼ hγqα

for t ∈ Eγ .


